Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yong-Bok Lee
Documents disponibles écrits par cet auteur
Affiner la rechercheDevelopment and performance measurement of oil-free turbocharger supported on gas foil bearings / Yong-Bok Lee in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 3 (Mars 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 3 (Mars 2012) . - 11 p.
Titre : Development and performance measurement of oil-free turbocharger supported on gas foil bearings Type de document : texte imprimé Auteurs : Yong-Bok Lee, Auteur ; Dong-Jin Park, Auteur ; Tae Ho Kim, Auteur ; Kyuho Sim, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Géne mécanique Langues : Anglais (eng) Mots-clés : Compressors Diesel engines Heat transfer Machine bearings Polynomials Turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper present the development of an oil-free turbocharger (TC) supported on gas foil bearings (GFBs) and its performance evaluation in a test rig driven by a diesel vehicle engine (EG). The rotor-bearing system was designed via a rotordynamic analysis with dynamic force coefficients derived from the analysis of the GFBs. The developed oil-free TC was designed using a hollow rotor with a radial turbine at one end and a compressor wheel at the other end, a center housing with journal and thrust GFBs, and turbine and compressor casings. Preliminary tests driven by pressurized shop air at room temperature demonstrated relatively stable operation up to a TC speed of 90,000 rpm, accompanied by a dominant synchronous motion of ~20 µm and small subsynchronous motions of less than 2 µm at the higher end of the speed range. Under realistic operating conditions with a diesel vehicle engine at a maximum TC speed of 136,000 rpm and a maximum EG speed of 3140 rpm, EG and TC speeds and gas flow properties were measured. The measured time responses of the TC speed and the turbine inlet pressure demonstrated time delays of ~3.9 and ~1.3 s from that of the EG speed during consecutive stepwise EG speed changes, implying the GFB friction and rotor inertia led to time delays of ~2.6 s. The measured pressures and temperatures showed trends following second-order polynomials against EG speed. Regarding TC efficiency, 4.3 kW of mechanical power was supplied by the turbine and 3.3 kW was consumed by the compressor at the top speed of 136,000 rpm, and the power loss reached 22% of the turbine power. Furthermore, the estimated GFB power losses from the GFB analysis were approximately 25% of the total power loss at higher speeds, indicating the remainder of the power loss resulted from heat transfer from the exhaust gas to the surrounding solid structures. Incidentally, as the TC speed was increased from 45,000 to 136,000 rpm, the estimated turbine inlet power increased from 19 to 79 kW, the compressor exit power increased from 7 to 26 kW, and the TC output mass flow rate from the compressor increased from 21 to 74 g/s. The average TC compressor exit power was estimated at ~34% of the turbine inlet power over this range. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000003 [...] [article] Development and performance measurement of oil-free turbocharger supported on gas foil bearings [texte imprimé] / Yong-Bok Lee, Auteur ; Dong-Jin Park, Auteur ; Tae Ho Kim, Auteur ; Kyuho Sim, Auteur . - 2012 . - 11 p.
Géne mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 3 (Mars 2012) . - 11 p.
Mots-clés : Compressors Diesel engines Heat transfer Machine bearings Polynomials Turbines Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper present the development of an oil-free turbocharger (TC) supported on gas foil bearings (GFBs) and its performance evaluation in a test rig driven by a diesel vehicle engine (EG). The rotor-bearing system was designed via a rotordynamic analysis with dynamic force coefficients derived from the analysis of the GFBs. The developed oil-free TC was designed using a hollow rotor with a radial turbine at one end and a compressor wheel at the other end, a center housing with journal and thrust GFBs, and turbine and compressor casings. Preliminary tests driven by pressurized shop air at room temperature demonstrated relatively stable operation up to a TC speed of 90,000 rpm, accompanied by a dominant synchronous motion of ~20 µm and small subsynchronous motions of less than 2 µm at the higher end of the speed range. Under realistic operating conditions with a diesel vehicle engine at a maximum TC speed of 136,000 rpm and a maximum EG speed of 3140 rpm, EG and TC speeds and gas flow properties were measured. The measured time responses of the TC speed and the turbine inlet pressure demonstrated time delays of ~3.9 and ~1.3 s from that of the EG speed during consecutive stepwise EG speed changes, implying the GFB friction and rotor inertia led to time delays of ~2.6 s. The measured pressures and temperatures showed trends following second-order polynomials against EG speed. Regarding TC efficiency, 4.3 kW of mechanical power was supplied by the turbine and 3.3 kW was consumed by the compressor at the top speed of 136,000 rpm, and the power loss reached 22% of the turbine power. Furthermore, the estimated GFB power losses from the GFB analysis were approximately 25% of the total power loss at higher speeds, indicating the remainder of the power loss resulted from heat transfer from the exhaust gas to the surrounding solid structures. Incidentally, as the TC speed was increased from 45,000 to 136,000 rpm, the estimated turbine inlet power increased from 19 to 79 kW, the compressor exit power increased from 7 to 26 kW, and the TC output mass flow rate from the compressor increased from 21 to 74 g/s. The average TC compressor exit power was estimated at ~34% of the turbine inlet power over this range. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000003 [...] Effects of mesh density on static load performance of metal mesh gas foil bearings / Yong-Bok Lee in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 1 (Janvier 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 08 p.
Titre : Effects of mesh density on static load performance of metal mesh gas foil bearings Type de document : texte imprimé Auteurs : Yong-Bok Lee, Auteur ; Chang Ho Kim, Auteur ; Tae Ho Kim, Auteur ; Young Tae Kim, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Damping Elastic constants Machine bearings Net structures (mechanical) Rotors Stainless steel Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Metal mesh materials have been used successfully in vibration isolators and bearing dampers due to their superior friction or hysteresis damping mechanism. These materials are formed to metal mesh (or wire mesh) structures in ring-shape by compressing a weave of metal wires, in general. Recently, oil-free rotating machinery implement metal mesh structures into hydrodynamic gas foil bearings by replacing bump strip layers with them, to increase its bearing structural damping. A metal mesh foil bearing (MMFB) consists of a top foil and support elastic metal mesh pads installed between a rotating shaft and a housing. The present research presents load capacity tests of a MMFB at rotor rest (0 rpm) and 30 krpm for three metal mesh densities of 13.1%, 23.2%, and 31.6%. The metal mesh pad of test MMFB is made using a stainless steel wire with a diameter of 0.15 mm. Test rig comprises a rigid rotor with a diameter of 60 mm supported on two ball bearings at both ends and test MMFB with an axial length of 50 mm floats on the rotor. Static loads is provided with a mechanical loading device on test MMFB and a strain gauge type load cell measures the applied static loads. A series of static load versus deflection tests were conducted for selected metal mesh densities at rest (0 rpm). Test data are compared to further test results of static load versus journal eccentricity recorded at the rotor speed of 30 krpm. Test data show a strong nonlinearity of bearing deflection (journal eccentricity) with static load, independent of rotor spinning. Observed hysteresis loops imply significant structural damping of test MMFB. Measured journal deflections at 0 rpm are in similar trend to recorded journal eccentricities at the finite rotor speed; thus implying that the MMFB performance depends mainly on the metal mesh structures. The paper also estimates linearlized stiffness coefficient and damping loss factor of test MMFB using the measured static load versus deflection test data at 0 rpm and 30 krpm. The results show that the highest mesh density of 31.6% produces highest linearlized stiffness coefficient and damping loss factor. With rotor spinning at 30 krpm, the linearlized stiffness coefficient and damping loss factor decrease slightly, independent of metal mesh densities. The present test data will serve as a database for benchmarking MMFB predictive models. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] [article] Effects of mesh density on static load performance of metal mesh gas foil bearings [texte imprimé] / Yong-Bok Lee, Auteur ; Chang Ho Kim, Auteur ; Tae Ho Kim, Auteur ; Young Tae Kim, Auteur . - 2012 . - 08 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 1 (Janvier 2012) . - 08 p.
Mots-clés : Damping Elastic constants Machine bearings Net structures (mechanical) Rotors Stainless steel Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Metal mesh materials have been used successfully in vibration isolators and bearing dampers due to their superior friction or hysteresis damping mechanism. These materials are formed to metal mesh (or wire mesh) structures in ring-shape by compressing a weave of metal wires, in general. Recently, oil-free rotating machinery implement metal mesh structures into hydrodynamic gas foil bearings by replacing bump strip layers with them, to increase its bearing structural damping. A metal mesh foil bearing (MMFB) consists of a top foil and support elastic metal mesh pads installed between a rotating shaft and a housing. The present research presents load capacity tests of a MMFB at rotor rest (0 rpm) and 30 krpm for three metal mesh densities of 13.1%, 23.2%, and 31.6%. The metal mesh pad of test MMFB is made using a stainless steel wire with a diameter of 0.15 mm. Test rig comprises a rigid rotor with a diameter of 60 mm supported on two ball bearings at both ends and test MMFB with an axial length of 50 mm floats on the rotor. Static loads is provided with a mechanical loading device on test MMFB and a strain gauge type load cell measures the applied static loads. A series of static load versus deflection tests were conducted for selected metal mesh densities at rest (0 rpm). Test data are compared to further test results of static load versus journal eccentricity recorded at the rotor speed of 30 krpm. Test data show a strong nonlinearity of bearing deflection (journal eccentricity) with static load, independent of rotor spinning. Observed hysteresis loops imply significant structural damping of test MMFB. Measured journal deflections at 0 rpm are in similar trend to recorded journal eccentricities at the finite rotor speed; thus implying that the MMFB performance depends mainly on the metal mesh structures. The paper also estimates linearlized stiffness coefficient and damping loss factor of test MMFB using the measured static load versus deflection test data at 0 rpm and 30 krpm. The results show that the highest mesh density of 31.6% produces highest linearlized stiffness coefficient and damping loss factor. With rotor spinning at 30 krpm, the linearlized stiffness coefficient and damping loss factor decrease slightly, independent of metal mesh densities. The present test data will serve as a database for benchmarking MMFB predictive models. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000001 [...] Rotordynamic performance of an oil-free turbo blower focusing on load capacity of gas foil thrust bearings / Tae Ho Kim in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 2 (Février 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 2 (Février 2012) . - 07 p.
Titre : Rotordynamic performance of an oil-free turbo blower focusing on load capacity of gas foil thrust bearings Type de document : texte imprimé Auteurs : Tae Ho Kim, Auteur ; Yong-Bok Lee, Auteur ; Young Tae Kim, Auteur ; Kyong Ho Jeong, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Compressed air systems Finite element analysis Hydrodynamics Impellers Rolling bearings Rotors Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Engineered design of modern efficient turbomachinery based on accurate model predictions is of importance as operating speed and rate power increase. Industrial applications use hydrodynamic fluid film bearings as rotor support elements due to their advantages over rolling element bearings in operating speed, system stability (rotordynamic and thermal), and maintenance life. Recently, microturbomachinery (< 250 kW) implement gas foil bearings (GFBs) as its rotor supports due to its compact design without lubricant supply systems and enhanced stability characteristics. To meet the needs from manufacturers, the turbomachinery development procedure includes a rotordynamic design and a gas foil journal bearing (GFJB) analysis in general. The present research focuses on the role of gas foil thrust bearings (GFJBs) supporting axial load (static and dynamic) in an oil-free turbo blower with a 75 kW (100 HP) rate power at 30,000 rpm. The turbo blower provides a compressed air with a pressure ratio of 1.6 at a mass flow rate of 0.92 kg/s, using a centrifugal impeller installed at the rotor end. Two GFJBs with a diameter of 66mm and a length of 50 mm and one pair of GFTB with an outer diameter of 144 mm and an inner diameter of 74 mm support the rotor with an axial length of 493 mm and a weight of 12.7 kg. A finite element rotordynamic model prediction using predicted linearized GFJB force coefficients designs the rotor-GFB system with stability at the rotor speed of 30,000 rpm. Model predictions of the GFTB show axial load carrying performance. Experimental tests on the designed turbo blower; however, demonstrate unexpected large amplitudes of subsynchronous rotor lateral motions. Post-inspection reveals minor rubbing signs on the GFJB top foils and significant wear on the GFTB top foil. Therefore, GFTB is redesigned to have the larger outer diameter of 166 mm for the enhanced load capacity, i.e., 145%, increase in its loading area. The modification improves the rotor-GFB system performance with dominant synchronous motions up to the rate speed of 30,000 rpm. In addition, the paper studies the effect of GFTB tilting angles on the system performance. Insertion of shims between the GFTB brackets changes the bearing tilting angles. Model predictions show the decrease in the thrust load capacity by as large as 86% by increase in the tilting angle to 0.0006 rad (0.03438 deg). Experimental test data verify the computational model predictions. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000002 [...] [article] Rotordynamic performance of an oil-free turbo blower focusing on load capacity of gas foil thrust bearings [texte imprimé] / Tae Ho Kim, Auteur ; Yong-Bok Lee, Auteur ; Young Tae Kim, Auteur ; Kyong Ho Jeong, Auteur . - 2012 . - 07 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 2 (Février 2012) . - 07 p.
Mots-clés : Compressed air systems Finite element analysis Hydrodynamics Impellers Rolling bearings Rotors Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Engineered design of modern efficient turbomachinery based on accurate model predictions is of importance as operating speed and rate power increase. Industrial applications use hydrodynamic fluid film bearings as rotor support elements due to their advantages over rolling element bearings in operating speed, system stability (rotordynamic and thermal), and maintenance life. Recently, microturbomachinery (< 250 kW) implement gas foil bearings (GFBs) as its rotor supports due to its compact design without lubricant supply systems and enhanced stability characteristics. To meet the needs from manufacturers, the turbomachinery development procedure includes a rotordynamic design and a gas foil journal bearing (GFJB) analysis in general. The present research focuses on the role of gas foil thrust bearings (GFJBs) supporting axial load (static and dynamic) in an oil-free turbo blower with a 75 kW (100 HP) rate power at 30,000 rpm. The turbo blower provides a compressed air with a pressure ratio of 1.6 at a mass flow rate of 0.92 kg/s, using a centrifugal impeller installed at the rotor end. Two GFJBs with a diameter of 66mm and a length of 50 mm and one pair of GFTB with an outer diameter of 144 mm and an inner diameter of 74 mm support the rotor with an axial length of 493 mm and a weight of 12.7 kg. A finite element rotordynamic model prediction using predicted linearized GFJB force coefficients designs the rotor-GFB system with stability at the rotor speed of 30,000 rpm. Model predictions of the GFTB show axial load carrying performance. Experimental tests on the designed turbo blower; however, demonstrate unexpected large amplitudes of subsynchronous rotor lateral motions. Post-inspection reveals minor rubbing signs on the GFJB top foils and significant wear on the GFTB top foil. Therefore, GFTB is redesigned to have the larger outer diameter of 166 mm for the enhanced load capacity, i.e., 145%, increase in its loading area. The modification improves the rotor-GFB system performance with dominant synchronous motions up to the rate speed of 30,000 rpm. In addition, the paper studies the effect of GFTB tilting angles on the system performance. Insertion of shims between the GFTB brackets changes the bearing tilting angles. Model predictions show the decrease in the thrust load capacity by as large as 86% by increase in the tilting angle to 0.0006 rad (0.03438 deg). Experimental test data verify the computational model predictions. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000002 [...] Rotordynamic performance of shimmed gas foil bearings for oil-free turbochargers / Kyuho Sim in Transactions of the ASME . Journal of tribology, Vol. 134 N° 3 (Juillet 2012)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 134 N° 3 (Juillet 2012) . - 11 p.
Titre : Rotordynamic performance of shimmed gas foil bearings for oil-free turbochargers Type de document : texte imprimé Auteurs : Kyuho Sim, Auteur ; Yong-Bok Lee, Auteur ; Tae Ho Kim, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : tribology Langues : Anglais (eng) Mots-clés : oil-free turbochargers; internal combustion engines; lubricant; gas foil bearings Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Oil-free turbochargers (TCs) will increase the power and efficiency of internal combustion engines, both sparking ignition and compression ignition, without engine oil lubricant feeding or scheduled maintenance. Using gas foil bearings (GFBs) in passenger vehicle TCs enables compact, lightweight, oil-free systems, along with accurate shaft motion. This paper presents extensive test measurements on GFBs for oil-free TCs, including static load-deflection measurements of test GFBs, rotordynamic performance measurements of a compressed air driven oil-free TC unit supported on test GFBs, and bench test measurements of the oil-free TC driven by a passenger vehicle diesel engine. Two configurations of GFBs, one original and the other modified with three shims, are subjected to a series of experimental tests. For the shimmed GFB, three metal shims are inserted under the bump-strip layers, in contact with the bearing housing. The installation of shims creates mechanical preloads that enhance a hydrodynamic wedge in the assembly radial clearance to generate more film pressure. Simple static load-deflection tests estimate the assembly radial clearance of the shimmed GFB, which is smaller than that of the original GFB. Model predictions agree well with test data. The discrepancy between the model predictions and test data is attributed to fabrication inaccuracy in the top foil and bump strip layers. Test GFBs are installed into a TC test rig driven by compressed air for rotordynamic performance measurements. The test TC rotor, 335 g in weight and 117 mm long, is coated with a commercially available, wear-resistant solid lubricant, Amorphous M, to prevent severe wear during start-up and shutdown in the absence of an air film. A pair of optical proximity probes positioned orthogonally at the compressor end record lateral rotor motions. Rotordynamic test results show that the shimmed GFB significantly diminishes the large amplitude of subsynchronous rotor motions arising in the unmodified GFB. Predicted synchronous rotor amplitudes and rigid body mode natural frequencies agree reasonably well with recorded test data. Finally, the oil-free TC is installed into a passenger vehicle diesel engine test bench. The TC rotor speed is controlled by the vehicle engine. Speed-up tests show dominant synchronous motion (1X) of the rotor. Whirl frequencies of the relatively small subsynchronous motions are associated with the rigid body natural mode of the TC rotor-GFB system as well as (forced) excitation from the four-cylinder diesel engine. The bench test measurements demonstrate a significant reduction in the amplitude of subsynchronous motions for the shimmed GFB, thus verifying the preliminary test results in the TC test rig driven by compressed air. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://www.asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013400 [...] [article] Rotordynamic performance of shimmed gas foil bearings for oil-free turbochargers [texte imprimé] / Kyuho Sim, Auteur ; Yong-Bok Lee, Auteur ; Tae Ho Kim, Auteur . - 2012 . - 11 p.
tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 134 N° 3 (Juillet 2012) . - 11 p.
Mots-clés : oil-free turbochargers; internal combustion engines; lubricant; gas foil bearings Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : Oil-free turbochargers (TCs) will increase the power and efficiency of internal combustion engines, both sparking ignition and compression ignition, without engine oil lubricant feeding or scheduled maintenance. Using gas foil bearings (GFBs) in passenger vehicle TCs enables compact, lightweight, oil-free systems, along with accurate shaft motion. This paper presents extensive test measurements on GFBs for oil-free TCs, including static load-deflection measurements of test GFBs, rotordynamic performance measurements of a compressed air driven oil-free TC unit supported on test GFBs, and bench test measurements of the oil-free TC driven by a passenger vehicle diesel engine. Two configurations of GFBs, one original and the other modified with three shims, are subjected to a series of experimental tests. For the shimmed GFB, three metal shims are inserted under the bump-strip layers, in contact with the bearing housing. The installation of shims creates mechanical preloads that enhance a hydrodynamic wedge in the assembly radial clearance to generate more film pressure. Simple static load-deflection tests estimate the assembly radial clearance of the shimmed GFB, which is smaller than that of the original GFB. Model predictions agree well with test data. The discrepancy between the model predictions and test data is attributed to fabrication inaccuracy in the top foil and bump strip layers. Test GFBs are installed into a TC test rig driven by compressed air for rotordynamic performance measurements. The test TC rotor, 335 g in weight and 117 mm long, is coated with a commercially available, wear-resistant solid lubricant, Amorphous M, to prevent severe wear during start-up and shutdown in the absence of an air film. A pair of optical proximity probes positioned orthogonally at the compressor end record lateral rotor motions. Rotordynamic test results show that the shimmed GFB significantly diminishes the large amplitude of subsynchronous rotor motions arising in the unmodified GFB. Predicted synchronous rotor amplitudes and rigid body mode natural frequencies agree reasonably well with recorded test data. Finally, the oil-free TC is installed into a passenger vehicle diesel engine test bench. The TC rotor speed is controlled by the vehicle engine. Speed-up tests show dominant synchronous motion (1X) of the rotor. Whirl frequencies of the relatively small subsynchronous motions are associated with the rigid body natural mode of the TC rotor-GFB system as well as (forced) excitation from the four-cylinder diesel engine. The bench test measurements demonstrate a significant reduction in the amplitude of subsynchronous motions for the shimmed GFB, thus verifying the preliminary test results in the TC test rig driven by compressed air. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://www.asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE900013400 [...] Thermal performance measurement of a bump type gas foil bearing floating on a hollow shaft for increasing rotating speed and static load / Tae Ho Kim in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 2 (Février 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 2 (Février 2012) . - 05 p.
Titre : Thermal performance measurement of a bump type gas foil bearing floating on a hollow shaft for increasing rotating speed and static load Type de document : texte imprimé Auteurs : Tae Ho Kim, Auteur ; Jin Woo Song, Auteur ; Yong-Bok Lee, Auteur ; Kyuho Sim, Auteur Année de publication : 2012 Article en page(s) : 05 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Machine bearings Motor drives Strain gauges Temperature measurement Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Identifying thermal characteristics of gas foil bearings (GFBs) provides an insight for successful implementation into high speed oil-free turbomachinery. The paper presents temperature measurements of a bump type GFB floating on a hollow shaft for various operating conditions. Two angular ball bearings support the hollow shaft at one end (right), and the other end (left) is free. Test GFB has the outer diameter of 100 mm and the axial length of 45 mm, and the hollow shaft has the outer and inner diameters of 60 mm and 40 mm, respectively. An electric motor drives the hollow shaft using a spline coupling connection. A mechanical loading device provides static loads on test GFB upward via a metal wire, and a strain gauge type load cell placed in the middle of the wire indicates the applied loads. During experiments for shaft speeds of 5 krpm, 10 krpm, and 15 krpm and with static loads of 58.9 N (6 kgf), 78.5 N (8 kgf), and 98.1 N (10 kgf), twelve thermocouples measure the outer surface temperatures of test GFB at four angular locations of 45 deg, 135 deg, 215 deg, and 315 deg, with an origin at the top foil free end, and three axial locations of bearing centerline and both side edges at each angle. Two infrared thermometers measure the outer surface temperature of the hollow shaft at free and supported ends close to test GFB. Test results show that GFB temperatures increase as the shaft speed increases and as the static load increases, with higher temperatures in the loaded zone (135 deg and 215 deg) than those in the unloaded zone (45 deg and 315 deg). In general, the recorded temperatures are highest at 225 deg where a highest hydrodynamic pressure is expected to build up. Measured temperatures at the bearing centerline are higher than those at the side edges, as expected. In addition, large thermal gradients are recorded in the hollow shaft along the axial direction with higher temperatures at the supported end. The axial thermal gradient of the shaft is thought to cause higher temperatures at the bearing right edge facing the ball bearing support than those at the left edge. The paper presents test data along with detailed test GFB/shaft geometries and material properties. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000002 [...] [article] Thermal performance measurement of a bump type gas foil bearing floating on a hollow shaft for increasing rotating speed and static load [texte imprimé] / Tae Ho Kim, Auteur ; Jin Woo Song, Auteur ; Yong-Bok Lee, Auteur ; Kyuho Sim, Auteur . - 2012 . - 05 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 2 (Février 2012) . - 05 p.
Mots-clés : Machine bearings Motor drives Strain gauges Temperature measurement Turbomachinery Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Identifying thermal characteristics of gas foil bearings (GFBs) provides an insight for successful implementation into high speed oil-free turbomachinery. The paper presents temperature measurements of a bump type GFB floating on a hollow shaft for various operating conditions. Two angular ball bearings support the hollow shaft at one end (right), and the other end (left) is free. Test GFB has the outer diameter of 100 mm and the axial length of 45 mm, and the hollow shaft has the outer and inner diameters of 60 mm and 40 mm, respectively. An electric motor drives the hollow shaft using a spline coupling connection. A mechanical loading device provides static loads on test GFB upward via a metal wire, and a strain gauge type load cell placed in the middle of the wire indicates the applied loads. During experiments for shaft speeds of 5 krpm, 10 krpm, and 15 krpm and with static loads of 58.9 N (6 kgf), 78.5 N (8 kgf), and 98.1 N (10 kgf), twelve thermocouples measure the outer surface temperatures of test GFB at four angular locations of 45 deg, 135 deg, 215 deg, and 315 deg, with an origin at the top foil free end, and three axial locations of bearing centerline and both side edges at each angle. Two infrared thermometers measure the outer surface temperature of the hollow shaft at free and supported ends close to test GFB. Test results show that GFB temperatures increase as the shaft speed increases and as the static load increases, with higher temperatures in the loaded zone (135 deg and 215 deg) than those in the unloaded zone (45 deg and 315 deg). In general, the recorded temperatures are highest at 225 deg where a highest hydrodynamic pressure is expected to build up. Measured temperatures at the bearing centerline are higher than those at the side edges, as expected. In addition, large thermal gradients are recorded in the hollow shaft along the axial direction with higher temperatures at the supported end. The axial thermal gradient of the shaft is thought to cause higher temperatures at the bearing right edge facing the ball bearing support than those at the left edge. The paper presents test data along with detailed test GFB/shaft geometries and material properties. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000002 [...]