Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Margolis, Donald
Documents disponibles écrits par cet auteur
Affiner la rechercheEnergy Regenerative Actuator for Motion Control with Application to Fluid Power Systems / Margolis, Donald in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 127, N° 1 (Mars 2005)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 127, N° 1 (Mars 2005) . - 33-40 p.
Titre : Energy Regenerative Actuator for Motion Control with Application to Fluid Power Systems Titre original : Déclencheur Régénérateur d'Energie pour la Commande de Mouvement avec l'Application aux Systèmes d'Alimentation Liquide Type de document : texte imprimé Auteurs : Margolis, Donald, Auteur Article en page(s) : 33-40 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Commande de mouvement Machines-outils Energie Simulateur Déclancheurs Stockage d'énergie Index. décimale : 620.1/389 Résumé : Motion control is principally involved with moving a load along some prescribed trajectory. Flight simulators and numerically controlled machine tools are exemples where motion control is required. Actuators for motion control are typically electrohydraulic, electropneumatic, or electromecanical. An electric signal from a controller modulates high power elements that control motion of a load in some prescribed manner. Since load are continuously being accelerated and decelerated, actuators absorb energy as frequently as they out-put energy, but power is required from the supply regardless of the direction of power flow in the actuator. The absorbed power is simply dissipated in the actuator or power supply. An actuator concept is developed here in which energy storage elements become part of the actuator, and absorbed power is recovered while still performing a high level of motion control. The concept is developed for a fluid power application, but is not restricted to fluid type devices. Practical realizations of this concept will allow downsizing of power supplies as well as reduced power consumption for any particular application.
La commande de mouvement est principalement impliquée de déplacer une charge le long de certains trajectoire prescrite. Les machines-outils et numériquement commandées de simulateurs de vol sont des exemples où la commande de mouvement est exigée. Les déclencheurs pour la commande de mouvement sont en général électrohydrauliques, électropneumatiques, ou electromecanical. Un signal électrique d'un contrôleur module des éléments de puissance élevée que mouvement de commande d'une charge d'une certaine façon prescrite. Puisque la charge sont accélérées et sans interruption ralenties, les déclencheurs absorbent l'énergie aussi fréquemment que l'énergie qu'ils ont produits, mais la puissance est exigée de l'approvisionnement sans se soucier en direction de flux de puissance dans le déclencheur. La puissance absorbée est simplement absorbée dans le déclencheur ou l'alimentation d'énergie. Un concept de déclencheur est développé ici dans quels éléments de stockage d'énergie deviennent une partie du déclencheur, et la puissance absorbée est récupérée tout en exécutant toujours un niveau élevé de commande de mouvement. Le concept est développé pour une application de puissance liquide, mais n'est pas limité au type liquide dispositifs. Les réalisations pratiques de ce concept permettront la réduction de taille des alimentations d'énergie comme la puissance d'énergie réduite pour toute application particulière[article] Energy Regenerative Actuator for Motion Control with Application to Fluid Power Systems = Déclencheur Régénérateur d'Energie pour la Commande de Mouvement avec l'Application aux Systèmes d'Alimentation Liquide [texte imprimé] / Margolis, Donald, Auteur . - 33-40 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 127, N° 1 (Mars 2005) . - 33-40 p.
Mots-clés : Commande de mouvement Machines-outils Energie Simulateur Déclancheurs Stockage d'énergie Index. décimale : 620.1/389 Résumé : Motion control is principally involved with moving a load along some prescribed trajectory. Flight simulators and numerically controlled machine tools are exemples where motion control is required. Actuators for motion control are typically electrohydraulic, electropneumatic, or electromecanical. An electric signal from a controller modulates high power elements that control motion of a load in some prescribed manner. Since load are continuously being accelerated and decelerated, actuators absorb energy as frequently as they out-put energy, but power is required from the supply regardless of the direction of power flow in the actuator. The absorbed power is simply dissipated in the actuator or power supply. An actuator concept is developed here in which energy storage elements become part of the actuator, and absorbed power is recovered while still performing a high level of motion control. The concept is developed for a fluid power application, but is not restricted to fluid type devices. Practical realizations of this concept will allow downsizing of power supplies as well as reduced power consumption for any particular application.
La commande de mouvement est principalement impliquée de déplacer une charge le long de certains trajectoire prescrite. Les machines-outils et numériquement commandées de simulateurs de vol sont des exemples où la commande de mouvement est exigée. Les déclencheurs pour la commande de mouvement sont en général électrohydrauliques, électropneumatiques, ou electromecanical. Un signal électrique d'un contrôleur module des éléments de puissance élevée que mouvement de commande d'une charge d'une certaine façon prescrite. Puisque la charge sont accélérées et sans interruption ralenties, les déclencheurs absorbent l'énergie aussi fréquemment que l'énergie qu'ils ont produits, mais la puissance est exigée de l'approvisionnement sans se soucier en direction de flux de puissance dans le déclencheur. La puissance absorbée est simplement absorbée dans le déclencheur ou l'alimentation d'énergie. Un concept de déclencheur est développé ici dans quels éléments de stockage d'énergie deviennent une partie du déclencheur, et la puissance absorbée est récupérée tout en exécutant toujours un niveau élevé de commande de mouvement. Le concept est développé pour une application de puissance liquide, mais n'est pas limité au type liquide dispositifs. Les réalisations pratiques de ce concept permettront la réduction de taille des alimentations d'énergie comme la puissance d'énergie réduite pour toute application particulièreThe controller output observer / Basar Ozkan in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 130 n°6 (Novembre 2008)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 n°6 (Novembre 2008) . - 10 p.
Titre : The controller output observer : estimation of vehicle tire cornering and normal forces Type de document : texte imprimé Auteurs : Basar Ozkan, Auteur ; Marco Pengov, Auteur ; Margolis, Donald, Auteur Année de publication : 2009 Article en page(s) : 10 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : controller output observer; physical system; vehicles Résumé : A controller output observer is used for estimating specific outputs from a physical system through the use of alternative outputs that are measured. In most cases these estimated signals can be measured directly using sensors. However, some outputs are either not possible to measure directly or alternative outputs are just easier to measure. This paper focused on a method to estimate immeasurable quantities, in near real time, through the use of physical models and measured quantities. This can be done through the use of classical observers as introduced by in 1964 (“ Observing the state of a Linear System,” IEEE Trans. Mil. Electron., 8, pp. 74–80) However, since observers estimate the system states, one would have to again estimate the sought after outputs by another method, such as a constitutive relationship. The method proposed here shows that certain signals can be estimated directly by using a controller but without using a constitutive law. These estimated quantities are inputs to a model of the real system. In other words, these inputs drive the observer model. A promising use for the controller output observer is estimation of tire forces in vehicles. This is because tires are very difficult to model accurately, and even if the tire is modeled accurately, the surface conditions of the road must be known to predict tire forces. The controller output observer does not require a model of the tires. The method is tested using a vehicle model. Real measurements from a vehicle are used to show that the method succeeds in estimating quantities from the real vehicle. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] [article] The controller output observer : estimation of vehicle tire cornering and normal forces [texte imprimé] / Basar Ozkan, Auteur ; Marco Pengov, Auteur ; Margolis, Donald, Auteur . - 2009 . - 10 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 n°6 (Novembre 2008) . - 10 p.
Mots-clés : controller output observer; physical system; vehicles Résumé : A controller output observer is used for estimating specific outputs from a physical system through the use of alternative outputs that are measured. In most cases these estimated signals can be measured directly using sensors. However, some outputs are either not possible to measure directly or alternative outputs are just easier to measure. This paper focused on a method to estimate immeasurable quantities, in near real time, through the use of physical models and measured quantities. This can be done through the use of classical observers as introduced by in 1964 (“ Observing the state of a Linear System,” IEEE Trans. Mil. Electron., 8, pp. 74–80) However, since observers estimate the system states, one would have to again estimate the sought after outputs by another method, such as a constitutive relationship. The method proposed here shows that certain signals can be estimated directly by using a controller but without using a constitutive law. These estimated quantities are inputs to a model of the real system. In other words, these inputs drive the observer model. A promising use for the controller output observer is estimation of tire forces in vehicles. This is because tires are very difficult to model accurately, and even if the tire is modeled accurately, the surface conditions of the road must be known to predict tire forces. The controller output observer does not require a model of the tires. The method is tested using a vehicle model. Real measurements from a vehicle are used to show that the method succeeds in estimating quantities from the real vehicle. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] Whirling-beam self-tuning vibration absorber / Douglas Ivers in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 130 N° 3 (Mai/Juin 2008)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 N° 3 (Mai/Juin 2008) . - 11 p.
Titre : Whirling-beam self-tuning vibration absorber Type de document : texte imprimé Auteurs : Douglas Ivers, Auteur ; Robert Wilson, Auteur ; Margolis, Donald, Auteur Année de publication : 2010 Article en page(s) : 11 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : tuned vibration absorber; self-tuning vibration absorber Résumé : A classic tuned vibration absorber (TVA) is a device that, when attached to a structure, will greatly reduce the motion of the attachment at a specific excitation frequency. When a fixed frequency input is present, a TVA can be manufactured for the specific frequency input. When the input frequency changes during the course of operation, then an active adaptive TVA can be used where sensors, signal conditioning, and power are provided so that the tuned frequency can be varied over some range. A self-tuning vibration absorber (STVA) is a device that uses energy from the vibrating structure to produce some physical motion that changes the tuned frequency of the device. Through proper design, the tuned frequency will change in the appropriate direction and then stop changing when the tuned frequency matches the input frequency. This paper addresses the physics of one realization of a STVA and shows both analytical and experimental results. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/Mobile/article.aspx?article [...] [article] Whirling-beam self-tuning vibration absorber [texte imprimé] / Douglas Ivers, Auteur ; Robert Wilson, Auteur ; Margolis, Donald, Auteur . - 2010 . - 11 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 130 N° 3 (Mai/Juin 2008) . - 11 p.
Mots-clés : tuned vibration absorber; self-tuning vibration absorber Résumé : A classic tuned vibration absorber (TVA) is a device that, when attached to a structure, will greatly reduce the motion of the attachment at a specific excitation frequency. When a fixed frequency input is present, a TVA can be manufactured for the specific frequency input. When the input frequency changes during the course of operation, then an active adaptive TVA can be used where sensors, signal conditioning, and power are provided so that the tuned frequency can be varied over some range. A self-tuning vibration absorber (STVA) is a device that uses energy from the vibrating structure to produce some physical motion that changes the tuned frequency of the device. Through proper design, the tuned frequency will change in the appropriate direction and then stop changing when the tuned frequency matches the input frequency. This paper addresses the physics of one realization of a STVA and shows both analytical and experimental results. En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/Mobile/article.aspx?article [...]