Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur T. Lachaux
Documents disponibles écrits par cet auteur
Affiner la rechercheStudy on the operational window of a swirl stabilized syngas burner under atmospheric and high pressure conditions / C. Mayer in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 3 (Mars 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 3 (Mars 2012) . - 11 p.
Titre : Study on the operational window of a swirl stabilized syngas burner under atmospheric and high pressure conditions Type de document : texte imprimé Auteurs : C. Mayer, Auteur ; J. Sangl, Auteur ; T. Sattelmayer, Auteur ; T. Lachaux, Auteur ; S. Bernero, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Air pollution control Chemiluminescence Combustion equipment Electrical safety Flames Fuel systems Gas turbine power stations Gas turbines Mie scattering Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Providing better fuel flexibility for future gas turbine generations is a challenge as the fuel range is expected to become significantly wider (natural gas, syngas, etc.). The technical problem is to reach a wide operational window, regarding both operational safety and low emissions. In a previous paper, an approach to meet these requirements has already been presented. However, in this previous study it was difficult to exactly quantify the improvement in operational safety due to the fact that the flashback phenomena observed were not fully understood. The present continuative paper is focused on a thorough investigation of operational safety also involving the influence of pressure on flashback and the emissions of the proposed burner concept. To gain better insight into the character of the propagation and to visualize the path of the flame during its upstream motion, tests were done on an atmospheric combustion test rig providing almost complete optical access to the mixing section as well as the flame tube. OH* chemiluminescence, HS-Mie scattering and ionization detectors were applied and undiluted H2 was used as fuel for the detailed analysis. To elaborate on the influence of pressure on the stability behavior, additional tests were conducted on a pressurized test rig using a downscaled burner. OH* chemiluminescence, flashback and lean blow out measurements were conducted in this campaign, using CH4, CH4/H2 mixtures and pure H2. The conducted experiments delivered the assets and drawbacks of the fuel injection strategy, where high axial fuel momentum was used to tune the flow field to achieve better flashback resistance. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000003 [...] [article] Study on the operational window of a swirl stabilized syngas burner under atmospheric and high pressure conditions [texte imprimé] / C. Mayer, Auteur ; J. Sangl, Auteur ; T. Sattelmayer, Auteur ; T. Lachaux, Auteur ; S. Bernero, Auteur . - 2012 . - 11 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 3 (Mars 2012) . - 11 p.
Mots-clés : Air pollution control Chemiluminescence Combustion equipment Electrical safety Flames Fuel systems Gas turbine power stations Gas turbines Mie scattering Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Providing better fuel flexibility for future gas turbine generations is a challenge as the fuel range is expected to become significantly wider (natural gas, syngas, etc.). The technical problem is to reach a wide operational window, regarding both operational safety and low emissions. In a previous paper, an approach to meet these requirements has already been presented. However, in this previous study it was difficult to exactly quantify the improvement in operational safety due to the fact that the flashback phenomena observed were not fully understood. The present continuative paper is focused on a thorough investigation of operational safety also involving the influence of pressure on flashback and the emissions of the proposed burner concept. To gain better insight into the character of the propagation and to visualize the path of the flame during its upstream motion, tests were done on an atmospheric combustion test rig providing almost complete optical access to the mixing section as well as the flame tube. OH* chemiluminescence, HS-Mie scattering and ionization detectors were applied and undiluted H2 was used as fuel for the detailed analysis. To elaborate on the influence of pressure on the stability behavior, additional tests were conducted on a pressurized test rig using a downscaled burner. OH* chemiluminescence, flashback and lean blow out measurements were conducted in this campaign, using CH4, CH4/H2 mixtures and pure H2. The conducted experiments delivered the assets and drawbacks of the fuel injection strategy, where high axial fuel momentum was used to tune the flow field to achieve better flashback resistance. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000003 [...]