Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Naohiko Takahashi
Documents disponibles écrits par cet auteur
Affiner la rechercheRotordynamic evaluation of centrifugal compressor using electromagnetic exciter / Naohiko Takahashi in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 3 (Mars 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 3 (Mars 2012) . - 07 p.
Titre : Rotordynamic evaluation of centrifugal compressor using electromagnetic exciter Type de document : texte imprimé Auteurs : Naohiko Takahashi, Auteur ; Yohei Magara, Auteur ; Mitsuhiro Narita, Auteur ; Haruo Miura, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Compressors Curve fitting Eigenvalues and eigenfunctions Exciters Frequency response Magnetic bearings Mechanical stability Rotors Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Since heavier gases exert larger effects on rotordynamic stability, stability evaluation is important in developing or designing high-pressure compressors. To evaluate the rotor stability during operation, an excitation test using a magnetic bearing is the most practical method. In stability analysis, labyrinth seals can produce significant cross coupling forces, which particularly reduce the damping ratio of the first forward mode. Therefore, forward modes should be distinguished from backward modes in the excitation test. One method that excites only the forward modes, not the backward modes (and vice versa), is the use of a rotating excitation. In this method, the force is simultaneously applied to two axes to excite the rotor in circular orbits. Two trigonometric functions, i.e., cosine and sine functions, are used to generate this rotation force. Another method is the use of a unidirectional excitation and a mathematical operation to distinguish the forward whirl from the backward whirl. In this method, a directional frequency response function that separates the two modes in the frequency domain is obtained from four frequency response functions by using a complex number expression for the rotor motion. In this study, the latter method was employed to evaluate the rotor stability of a high-pressure compressor. To obtain the frequencies and damping ratios of the eigenvalues, the curve fitting based on system identification methods, such as the prediction error method, was introduced for the derived frequency response functions. Firstly, these methods were applied to a base evaluation under a low-pressure gas operation, in which the stability mainly depends on the bearing property. Using the obtained results, the bearing coefficients were estimated. Next, the same methods were applied to stability evaluations under high-pressure gas operations. The destabilizing forces were also estimated from the test results and compared with the calculation results. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000003 [...] [article] Rotordynamic evaluation of centrifugal compressor using electromagnetic exciter [texte imprimé] / Naohiko Takahashi, Auteur ; Yohei Magara, Auteur ; Mitsuhiro Narita, Auteur ; Haruo Miura, Auteur . - 2012 . - 07 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 3 (Mars 2012) . - 07 p.
Mots-clés : Compressors Curve fitting Eigenvalues and eigenfunctions Exciters Frequency response Magnetic bearings Mechanical stability Rotors Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Since heavier gases exert larger effects on rotordynamic stability, stability evaluation is important in developing or designing high-pressure compressors. To evaluate the rotor stability during operation, an excitation test using a magnetic bearing is the most practical method. In stability analysis, labyrinth seals can produce significant cross coupling forces, which particularly reduce the damping ratio of the first forward mode. Therefore, forward modes should be distinguished from backward modes in the excitation test. One method that excites only the forward modes, not the backward modes (and vice versa), is the use of a rotating excitation. In this method, the force is simultaneously applied to two axes to excite the rotor in circular orbits. Two trigonometric functions, i.e., cosine and sine functions, are used to generate this rotation force. Another method is the use of a unidirectional excitation and a mathematical operation to distinguish the forward whirl from the backward whirl. In this method, a directional frequency response function that separates the two modes in the frequency domain is obtained from four frequency response functions by using a complex number expression for the rotor motion. In this study, the latter method was employed to evaluate the rotor stability of a high-pressure compressor. To obtain the frequencies and damping ratios of the eigenvalues, the curve fitting based on system identification methods, such as the prediction error method, was introduced for the derived frequency response functions. Firstly, these methods were applied to a base evaluation under a low-pressure gas operation, in which the stability mainly depends on the bearing property. Using the obtained results, the bearing coefficients were estimated. Next, the same methods were applied to stability evaluations under high-pressure gas operations. The destabilizing forces were also estimated from the test results and compared with the calculation results. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000003 [...]