Détail de l'auteur
Auteur Qingli Dai |
Documents disponibles écrits par cet auteur (6)



Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete -Element Models / Qingli Dai in Journal of engineering mechanics, Vol. 133 N°2 (Fevrier 2007)
![]()
[article]
Titre : Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete -Element Models Titre original : Prévision de Rigidité de Fluage de Mélange d'Asphalte avec l'Elément Fini Micro-Mécanique et les Modèles Discrets d'Elément Type de document : texte imprimé Auteurs : Qingli Dai, Auteur ; Zhanping You, Auteur ; Chang, Ching S., Éditeur scientifique Année de publication : 2007 Article en page(s) : 163-173 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Predictions Creep Stiffness Finite element method Discrete elements Asphalt Mixtures Prévisions Fluage Rigidité Méthode d'élément fini Eléments discrets Asphalte Mélanges Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This study presents micromechanical finite-element (FE) and discrete-element (DE) models for the prediction of viscoelastic creep stiffness of asphalt mixture. Asphalt mixture is composed of graded aggregates bound with mastic (asphalt mixed with fines and fine aggregates) and air voids. The two-dimensional (2D) microstructure of asphalt mixture was obtained by optically scanning the smoothly sawn surface of superpave gyratory compacted asphalt mixture specimens. For the FE method, the micromechanical model of asphalt mixture uses an equivalent lattice network structure whereby interparticle load transfer is simulated through an effective asphalt mastic zone. The ABAQUS FE model integrates a user material subroutine that combines continuum elements with viscoelastic properties for the effective asphalt mastic and rigid body elements for each aggregate. An incremental FE algorithm was employed in an ABAQUS user material model for the asphalt mastic to predict global viscoelastic behavior of asphalt mixture. In regard to the DE model, the outlines of aggregates were converted into polygons based on a 2D scanned mixture microstructure. The polygons were then mapped onto a sheet of uniformly sized disks, and the intrinsic and interface properties of the aggregates and mastic were assigned for the simulation. An experimental program was developed to measure the properties of sand mastic for simulation inputs. The laboratory measurements of the mixture creep stiffness were compared with FE and DE model predictions over a reduced time. The results indicated both methods were applicable for mixture creep stiffness prediction.
Cette étude présente l'élément fini micromécanique (Fe) et les modèles discrets de l'élément (De) pour la prévision de la rigidité visco-élastique de fluage du mélange d'asphalte. Le mélange d'asphalte se compose de mélanges bien gradués liés avec du mastic (asphalte mélangé aux fines et aux granulats fins) et les vides d'air. (La 2D) microstructure bidimensionnelle du mélange d'asphalte a été obtenue par optiquement le balayage la surface sans à-coup sciée des spécimens compacts rotatoires de mélange d'asphalte de superpave. Pour la méthode de Fe, le modèle micromécanique du mélange d'asphalte emploie une structure équivalente de réseau de trellis par lequel le transfert de charge d'inter-particle soit simulé par une zone efficace de mastic d'asphalte. Le modèle de Fe d'ABAQUS intègre un sous-programme matériel d'utilisateur qui combine des éléments de continuum avec les propriétés viscoélastiques pour le mastic efficace d'asphalte et des éléments rigides de corps pour chaque agrégat. Un algorithme par accroissement de Fe a été utilisé dans un modèle matériel d'utilisateur d'ABAQUS pour que le mastic d'asphalte prévoie le comportement viscoélastique global du mélange d'asphalte. En vue de ce model, les contours des agrégats ont été convertis en polygones basés sur une 2D microstructure balayée de mélange. Les polygones ont été alors tracés sur une feuille de disques uniformément classés, et les propriétés de qualité intrinsèque et d'interface des agrégats et du mastic ont été assignées pour la simulation. Un programme expérimental a été développé pour mesurer les propriétés du mastic de sable pour des entrées de simulation. Les mesures de laboratoire de la rigidité de fluage de mélange ont été comparées au Fe et à l'excédent de prévisions de DE model un temps réduit. Les résultats ont indiqué que les deux méthodes étaient applicables pour la prévision de rigidité de fluage de mélange.
DEWEY : 620.1 ISSN : 0733-9399 En ligne : : qingdai@mtu.edu, zyou@mtu.edu
in Journal of engineering mechanics > Vol. 133 N°2 (Fevrier 2007) . - 163-173 p.[article] Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete -Element Models = Prévision de Rigidité de Fluage de Mélange d'Asphalte avec l'Elément Fini Micro-Mécanique et les Modèles Discrets d'Elément [texte imprimé] / Qingli Dai, Auteur ; Zhanping You, Auteur ; Chang, Ching S., Éditeur scientifique . - 2007 . - 163-173 p.
Génie Mécanique
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 133 N°2 (Fevrier 2007) . - 163-173 p.
Mots-clés : Predictions Creep Stiffness Finite element method Discrete elements Asphalt Mixtures Prévisions Fluage Rigidité Méthode d'élément fini Eléments discrets Asphalte Mélanges Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This study presents micromechanical finite-element (FE) and discrete-element (DE) models for the prediction of viscoelastic creep stiffness of asphalt mixture. Asphalt mixture is composed of graded aggregates bound with mastic (asphalt mixed with fines and fine aggregates) and air voids. The two-dimensional (2D) microstructure of asphalt mixture was obtained by optically scanning the smoothly sawn surface of superpave gyratory compacted asphalt mixture specimens. For the FE method, the micromechanical model of asphalt mixture uses an equivalent lattice network structure whereby interparticle load transfer is simulated through an effective asphalt mastic zone. The ABAQUS FE model integrates a user material subroutine that combines continuum elements with viscoelastic properties for the effective asphalt mastic and rigid body elements for each aggregate. An incremental FE algorithm was employed in an ABAQUS user material model for the asphalt mastic to predict global viscoelastic behavior of asphalt mixture. In regard to the DE model, the outlines of aggregates were converted into polygons based on a 2D scanned mixture microstructure. The polygons were then mapped onto a sheet of uniformly sized disks, and the intrinsic and interface properties of the aggregates and mastic were assigned for the simulation. An experimental program was developed to measure the properties of sand mastic for simulation inputs. The laboratory measurements of the mixture creep stiffness were compared with FE and DE model predictions over a reduced time. The results indicated both methods were applicable for mixture creep stiffness prediction.
Cette étude présente l'élément fini micromécanique (Fe) et les modèles discrets de l'élément (De) pour la prévision de la rigidité visco-élastique de fluage du mélange d'asphalte. Le mélange d'asphalte se compose de mélanges bien gradués liés avec du mastic (asphalte mélangé aux fines et aux granulats fins) et les vides d'air. (La 2D) microstructure bidimensionnelle du mélange d'asphalte a été obtenue par optiquement le balayage la surface sans à-coup sciée des spécimens compacts rotatoires de mélange d'asphalte de superpave. Pour la méthode de Fe, le modèle micromécanique du mélange d'asphalte emploie une structure équivalente de réseau de trellis par lequel le transfert de charge d'inter-particle soit simulé par une zone efficace de mastic d'asphalte. Le modèle de Fe d'ABAQUS intègre un sous-programme matériel d'utilisateur qui combine des éléments de continuum avec les propriétés viscoélastiques pour le mastic efficace d'asphalte et des éléments rigides de corps pour chaque agrégat. Un algorithme par accroissement de Fe a été utilisé dans un modèle matériel d'utilisateur d'ABAQUS pour que le mastic d'asphalte prévoie le comportement viscoélastique global du mélange d'asphalte. En vue de ce model, les contours des agrégats ont été convertis en polygones basés sur une 2D microstructure balayée de mélange. Les polygones ont été alors tracés sur une feuille de disques uniformément classés, et les propriétés de qualité intrinsèque et d'interface des agrégats et du mastic ont été assignées pour la simulation. Un programme expérimental a été développé pour mesurer les propriétés du mastic de sable pour des entrées de simulation. Les mesures de laboratoire de la rigidité de fluage de mélange ont été comparées au Fe et à l'excédent de prévisions de DE model un temps réduit. Les résultats ont indiqué que les deux méthodes étaient applicables pour la prévision de rigidité de fluage de mélange.
DEWEY : 620.1 ISSN : 0733-9399 En ligne : : qingdai@mtu.edu, zyou@mtu.edu Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Prediction of Damage Behaviors in Asphalt Materials Using a Micromechanical Finite-Element Model and Image Analysis / Qingli Dai in Journal of engineering mechanics, vol.131, N° 7 (juillet 2005)
[article]
Titre : Prediction of Damage Behaviors in Asphalt Materials Using a Micromechanical Finite-Element Model and Image Analysis Titre original : Prévision des Comportements de Dommages en Matériaux d'Asphalte en Utilisant une Analyse de Modèle et d'Image d'Element Fini de Micromechanical Type de document : texte imprimé Auteurs : Qingli Dai, Auteur ; Shukla, Arun ; Parameswaran, Venkit ; Sadd, Martin H., Auteur Année de publication : 2005 Article en page(s) : 668-677 p. Note générale : Génie Mécanique, Génie civil Langues : Anglais (eng) Mots-clés : Damage Aspahalt concrete Finit element method Image analysis Comportement de dommages Béton d'asphalte Méthode d'élément fini Analyse d'image Index. décimale : 621.34/624 Résumé : A Study of the micromechanical damage behavior of asphalt concrete is presented.Asphalt concrete is composed d'aggregates mastic cement, and air voids, and its load carrying behavior is strongly related to the local microstructural load transfer between aggregate particles.Numerical simulation of this micromechanical behavior was accomplished by using a finite-element model that incoperated the mechanical load-carrying response between aggregates. The Finite-element sheme used a network of special frame elements each with stiffness matrix delopped from an approximate elasticity solution of the stress and displacement field in a cementationl ayer between particle pairs.Continuum damage mechanics was then incoporated within this solution, leading to the construction of a microdamage model capable of predicting typical global inelastic behavior found in asphalt materials. Using image processing and aggregate fitting techniques, simulation models of indirect tension, and compression samples were generated from surface photographic data of actual laboratory specimens. Model simulation results of the overall sample behavior and evolving microfailured fracture patterns compared favorably with experimental data collected on these samples.
Une étude du comportement micromechanical de dommages du béton d'asphalte est béton de presented.Asphalt est ciment composé de mastic de d'aggregates, et vides d'air, et son comportement portant de charge est fortement lié au transfert microstructural local de charge entre la simulation globale de particles.Numerical de ce comportement micromechanical a été accompli en employant un modèle d'fini-élément qui incoperated la réponse supportant la charge mécanique entre les agrégats. Le sheme d'Fini-élément a employé un réseau des éléments spéciaux d'armature que chacun avec la matrice de rigidité delopped d'une solution approximative d'élasticité de l'effort et le champ de déplacement dans un ayer de cementationl entre la mécanique de dommages des particules pairs.Continuum était incoporated alors dans cette solution, menant à la construction d'un modèle de microdamage capable de prévoir le comportement non élastique global typique trouvé en matériaux d'asphalte. En utilisant le traitement d'image et les techniques convenables globales, des modèles de simulation de la tension indirecte, et les échantillons de compression ont été produits des données photographiques extérieures des spécimens réels de laboratoire. Les résultats modèles de simulation du comportement global et de l'évolution d'échantillon microfailured des modèles de rupture comparés favorablement aux données expérimentales rassemblées sur ces échantillons.
in Journal of engineering mechanics > vol.131, N° 7 (juillet 2005) . - 668-677 p.[article] Prediction of Damage Behaviors in Asphalt Materials Using a Micromechanical Finite-Element Model and Image Analysis = Prévision des Comportements de Dommages en Matériaux d'Asphalte en Utilisant une Analyse de Modèle et d'Image d'Element Fini de Micromechanical [texte imprimé] / Qingli Dai, Auteur ; Shukla, Arun ; Parameswaran, Venkit ; Sadd, Martin H., Auteur . - 2005 . - 668-677 p.
Génie Mécanique, Génie civil
Langues : Anglais (eng)
in Journal of engineering mechanics > vol.131, N° 7 (juillet 2005) . - 668-677 p.
Mots-clés : Damage Aspahalt concrete Finit element method Image analysis Comportement de dommages Béton d'asphalte Méthode d'élément fini Analyse d'image Index. décimale : 621.34/624 Résumé : A Study of the micromechanical damage behavior of asphalt concrete is presented.Asphalt concrete is composed d'aggregates mastic cement, and air voids, and its load carrying behavior is strongly related to the local microstructural load transfer between aggregate particles.Numerical simulation of this micromechanical behavior was accomplished by using a finite-element model that incoperated the mechanical load-carrying response between aggregates. The Finite-element sheme used a network of special frame elements each with stiffness matrix delopped from an approximate elasticity solution of the stress and displacement field in a cementationl ayer between particle pairs.Continuum damage mechanics was then incoporated within this solution, leading to the construction of a microdamage model capable of predicting typical global inelastic behavior found in asphalt materials. Using image processing and aggregate fitting techniques, simulation models of indirect tension, and compression samples were generated from surface photographic data of actual laboratory specimens. Model simulation results of the overall sample behavior and evolving microfailured fracture patterns compared favorably with experimental data collected on these samples.
Une étude du comportement micromechanical de dommages du béton d'asphalte est béton de presented.Asphalt est ciment composé de mastic de d'aggregates, et vides d'air, et son comportement portant de charge est fortement lié au transfert microstructural local de charge entre la simulation globale de particles.Numerical de ce comportement micromechanical a été accompli en employant un modèle d'fini-élément qui incoperated la réponse supportant la charge mécanique entre les agrégats. Le sheme d'Fini-élément a employé un réseau des éléments spéciaux d'armature que chacun avec la matrice de rigidité delopped d'une solution approximative d'élasticité de l'effort et le champ de déplacement dans un ayer de cementationl entre la mécanique de dommages des particules pairs.Continuum était incoporated alors dans cette solution, menant à la construction d'un modèle de microdamage capable de prévoir le comportement non élastique global typique trouvé en matériaux d'asphalte. En utilisant le traitement d'image et les techniques convenables globales, des modèles de simulation de la tension indirecte, et les échantillons de compression ont été produits des données photographiques extérieures des spécimens réels de laboratoire. Les résultats modèles de simulation du comportement global et de l'évolution d'échantillon microfailured des modèles de rupture comparés favorablement aux données expérimentales rassemblées sur ces échantillons.
Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Tailored extended finite - element model for predicting crack propagation and fracture properties within idealized and digital cementitious material samples / Kenny Ng in Journal of engineering mechanics, Vol. 138 N° 1 (Janvier 2012)
![]()
[article]
Titre : Tailored extended finite - element model for predicting crack propagation and fracture properties within idealized and digital cementitious material samples Type de document : texte imprimé Auteurs : Kenny Ng, Auteur ; Qingli Dai, Auteur Année de publication : 2012 Article en page(s) : pp.89-100 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Heterogeneous cement-based materials Extended finite element model Micromechanics Compact tension test Single-edge notched beam Damage evolution Fracture properties Résumé : This paper presents a tailored extended finite-element model (XFEM) to predict crack propagation and fracture properties within idealized and digital cementitious material samples. The microstructure of the idealized cement-based materials includes the cement paste, particles, and interfacial boundaries. The tailored XFEM was developed to allow crack propagation within finite elements by using discontinuous enrichment functions and level-set methods. The Heaviside jump and the elastic asymptotic crack-tip enrichment functions were used to account for the displacement discontinuity across the crack-surface and around the crack-tip. The maximum fracture energy release rate was used as a criterion for determining the crack growth. The shielding effects within the interfacial zone were addressed with a numerical search scheme. The tailored XFEM was implemented with a MATLAB program to simulate the compact tension (CT) and the single-edge notched Beam (SEB) tests. For a homogeneous CT testing sample, the XFEM prediction on stress intensity factors was verified with the fracture mechanics analysis. The idealized samples of cement-based materials were generated with varied microstructures, including particle locations, orientations, and shape factors. The tailored XFEM was applied to investigate the effects of these microparameters on the fracture patterns of the idealized samples under CT loading. The XFEM simulation was also conducted on a homogeneous offset-notched SEB sample to predict the mixed-mode crack propagation. The predicted crack path matches well with refined cohesion fracture modeling from a recent study. Further validation of the tailored XFEM was conducted with fracture simulation of a digital SEB sample generated from the actual tested specimen. The predicted crack path was favorably compared with the fracture pattern of the tested concrete specimen with a middle notch. These simulation results indicated that the tailored XFEM has the ability to accurately predict the crack propagation and fracture properties within idealized and digital cementitious material samples. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000316
in Journal of engineering mechanics > Vol. 138 N° 1 (Janvier 2012) . - pp.89-100[article] Tailored extended finite - element model for predicting crack propagation and fracture properties within idealized and digital cementitious material samples [texte imprimé] / Kenny Ng, Auteur ; Qingli Dai, Auteur . - 2012 . - pp.89-100.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 138 N° 1 (Janvier 2012) . - pp.89-100
Mots-clés : Heterogeneous cement-based materials Extended finite element model Micromechanics Compact tension test Single-edge notched beam Damage evolution Fracture properties Résumé : This paper presents a tailored extended finite-element model (XFEM) to predict crack propagation and fracture properties within idealized and digital cementitious material samples. The microstructure of the idealized cement-based materials includes the cement paste, particles, and interfacial boundaries. The tailored XFEM was developed to allow crack propagation within finite elements by using discontinuous enrichment functions and level-set methods. The Heaviside jump and the elastic asymptotic crack-tip enrichment functions were used to account for the displacement discontinuity across the crack-surface and around the crack-tip. The maximum fracture energy release rate was used as a criterion for determining the crack growth. The shielding effects within the interfacial zone were addressed with a numerical search scheme. The tailored XFEM was implemented with a MATLAB program to simulate the compact tension (CT) and the single-edge notched Beam (SEB) tests. For a homogeneous CT testing sample, the XFEM prediction on stress intensity factors was verified with the fracture mechanics analysis. The idealized samples of cement-based materials were generated with varied microstructures, including particle locations, orientations, and shape factors. The tailored XFEM was applied to investigate the effects of these microparameters on the fracture patterns of the idealized samples under CT loading. The XFEM simulation was also conducted on a homogeneous offset-notched SEB sample to predict the mixed-mode crack propagation. The predicted crack path matches well with refined cohesion fracture modeling from a recent study. Further validation of the tailored XFEM was conducted with fracture simulation of a digital SEB sample generated from the actual tested specimen. The predicted crack path was favorably compared with the fracture pattern of the tested concrete specimen with a middle notch. These simulation results indicated that the tailored XFEM has the ability to accurately predict the crack propagation and fracture properties within idealized and digital cementitious material samples. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000316 Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Three-dimensional discrete element models for asphalt mixtures / Zhanping You in Journal of engineering mechanics, Vol. 134 n°12 (Décembre 2008)
![]()
[article]
Titre : Three-dimensional discrete element models for asphalt mixtures Type de document : texte imprimé Auteurs : Zhanping You, Auteur ; Sanjeev Adhikari, Auteur ; Qingli Dai, Auteur Année de publication : 2009 Article en page(s) : pp.1053–1063 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Micromechanics Asphalts Mixtures Discrete elements Two-dimensional models Three-dimensional Voids Aggregates Résumé : The main objective of this paper is to develop three-dimensional (3D) microstructure-based discrete element models of asphalt mixtures to study the dynamic modulus from the stress-strain response under compressive loads. The 3D microstructure of the asphalt mixture was obtained from a number of two-dimensional (2D) images. In the 2D discrete element model, the aggregate and mastic were simulated with the captured aggregate and mastic images. The 3D models were reconstructed with a number of 2D models. This stress-strain response of the 3D model was computed under the loading cycles. The stress-strain response was used to predict the asphalt mixture’s stiffness (modulus) by using the aggregate and mastic stiffness. The moduli of the 3D models were compared with the experimental measurements. It was found that the 3D discrete element models were able to predict the mixture moduli across a range of temperatures and loading frequencies. The 3D model prediction was found to be better than that of the 2D model. In addition, the effects of different air void percentages and aggregate moduli to the mixture moduli were investigated and discussed. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282008%29134%3A12%281 [...]
in Journal of engineering mechanics > Vol. 134 n°12 (Décembre 2008) . - pp.1053–1063[article] Three-dimensional discrete element models for asphalt mixtures [texte imprimé] / Zhanping You, Auteur ; Sanjeev Adhikari, Auteur ; Qingli Dai, Auteur . - 2009 . - pp.1053–1063.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 134 n°12 (Décembre 2008) . - pp.1053–1063
Mots-clés : Micromechanics Asphalts Mixtures Discrete elements Two-dimensional models Three-dimensional Voids Aggregates Résumé : The main objective of this paper is to develop three-dimensional (3D) microstructure-based discrete element models of asphalt mixtures to study the dynamic modulus from the stress-strain response under compressive loads. The 3D microstructure of the asphalt mixture was obtained from a number of two-dimensional (2D) images. In the 2D discrete element model, the aggregate and mastic were simulated with the captured aggregate and mastic images. The 3D models were reconstructed with a number of 2D models. This stress-strain response of the 3D model was computed under the loading cycles. The stress-strain response was used to predict the asphalt mixture’s stiffness (modulus) by using the aggregate and mastic stiffness. The moduli of the 3D models were compared with the experimental measurements. It was found that the 3D discrete element models were able to predict the mixture moduli across a range of temperatures and loading frequencies. The 3D model prediction was found to be better than that of the 2D model. In addition, the effects of different air void percentages and aggregate moduli to the mixture moduli were investigated and discussed. ISSN : 0733-9399 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%282008%29134%3A12%281 [...] Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Three-dimensional micromechanical finite-element network model for elastic damage behavior of idealized stone-based composite materials / Qingli Dai in Journal of engineering mechanics, Vol. 137 N° 6 (Juin 2011)
![]()
[article]
Titre : Three-dimensional micromechanical finite-element network model for elastic damage behavior of idealized stone-based composite materials Type de document : texte imprimé Auteurs : Qingli Dai, Auteur Année de publication : 2011 Article en page(s) : pp.410-421 Note générale : Mécanique appliquée Langues : Anglais (eng) Mots-clés : Micromechanics Stone-based materials Finite-element method Damage mechanics Three-dimensional models Résumé : This paper presents a three-dimensional (3D) micromechanical finite-element (FE) network model for predicting elastic damage behavior of the idealized stone-based materials. Stone-based composite materials have multiphase structures: an aggregate (or stone) skeleton, a binding medium, fillers, and air voids. Numerical simulation of the micromechanical behavior of the idealized stone-based materials was accomplished by using a microframe element network model that incorporated the mechanical load transfer between adjacent particles. The elastic stiffness matrix of this special element was obtained from an approximate elastic stress-strain analysis of straight cement between particle pairs. A damage-coupled microframe element was then formulated with bilinear damage laws, including elastic and softening behavior based on the equivalent fracture release energy. Indirect tension and compression simulations were conducted with developed FE models on the idealized digital samples of the stone-based materials. These simulations predicted the internal microdamage distribution and global fracture behavior of these samples, which qualitatively agree with the laboratory observations. The results indicate that the developed FE models have the capability to predict the typical loading-related damage behavior observed from the stone-based materials. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v137/i6/p410_s1?isAuthorized=no
in Journal of engineering mechanics > Vol. 137 N° 6 (Juin 2011) . - pp.410-421[article] Three-dimensional micromechanical finite-element network model for elastic damage behavior of idealized stone-based composite materials [texte imprimé] / Qingli Dai, Auteur . - 2011 . - pp.410-421.
Mécanique appliquée
Langues : Anglais (eng)
in Journal of engineering mechanics > Vol. 137 N° 6 (Juin 2011) . - pp.410-421
Mots-clés : Micromechanics Stone-based materials Finite-element method Damage mechanics Three-dimensional models Résumé : This paper presents a three-dimensional (3D) micromechanical finite-element (FE) network model for predicting elastic damage behavior of the idealized stone-based materials. Stone-based composite materials have multiphase structures: an aggregate (or stone) skeleton, a binding medium, fillers, and air voids. Numerical simulation of the micromechanical behavior of the idealized stone-based materials was accomplished by using a microframe element network model that incorporated the mechanical load transfer between adjacent particles. The elastic stiffness matrix of this special element was obtained from an approximate elastic stress-strain analysis of straight cement between particle pairs. A damage-coupled microframe element was then formulated with bilinear damage laws, including elastic and softening behavior based on the equivalent fracture release energy. Indirect tension and compression simulations were conducted with developed FE models on the idealized digital samples of the stone-based materials. These simulations predicted the internal microdamage distribution and global fracture behavior of these samples, which qualitatively agree with the laboratory observations. The results indicate that the developed FE models have the capability to predict the typical loading-related damage behavior observed from the stone-based materials. DEWEY : 620.1 ISSN : 0733-9399 En ligne : http://ascelibrary.org/emo/resource/1/jenmdt/v137/i6/p410_s1?isAuthorized=no Exemplaires
Code-barres Cote Support Localisation Section Disponibilité aucun exemplaire Viscoelastic model for discrete element simulation of asphalt mixtures / Yu Liu in Journal of engineering mechanics, Vol. 135 N° 4 (Avril 2009)
![]()
Permalink