Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Mehdi Ghorbanzadeh
Documents disponibles écrits par cet auteur
Affiner la rechercheModeling the Cellular Uptake of Magnetofluorescent Nanoparticles in Pancreatic Cancer Cells / Mehdi Ghorbanzadeh in Industrial & engineering chemistry research, Vol. 51 N° 32 (Août 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 32 (Août 2012) . - pp. 10712–10718
Titre : Modeling the Cellular Uptake of Magnetofluorescent Nanoparticles in Pancreatic Cancer Cells : A Quantitative Structure Activity Relationship Study Type de document : texte imprimé Auteurs : Mehdi Ghorbanzadeh, Auteur ; Mohammad H. Fatemi, Auteur ; Masoumeh Karimpour, Auteur Année de publication : 2012 Article en page(s) : pp. 10712–10718 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Nanoparticles Modeling Résumé : An artificial neural network was employed to predict the cellular uptake of 109 magnetofluorescent nanoparticles (NPs) in pancreatic cancer cells on the basis of quantitative structure activity relationship method. Six descriptors chosen by combining self-organizing map and stepwise multiple linear regression (MLR) techniques were used to correlate the nanostructure of the studied particles with their bioactivity using MLR and multilayered perceptron neural network (MLP-NN) modeling techniques. For the MLR and MLP-NN models, the correlation coefficient was 0.769 and 0.934, and the root-mean-square error was 0.364 and 0.150, respectively. The results obtained after a leave-many-out cross-validation test revealed the credibility of MLP-NN for the prediction of cellular uptake of NPs. In addition, sensitivity analysis of MLP-NN model indicated that the number of hydrogen-bond donor sites in the organic coating of a NP is the predominant factor responsible for cellular uptake. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie3006947 [article] Modeling the Cellular Uptake of Magnetofluorescent Nanoparticles in Pancreatic Cancer Cells : A Quantitative Structure Activity Relationship Study [texte imprimé] / Mehdi Ghorbanzadeh, Auteur ; Mohammad H. Fatemi, Auteur ; Masoumeh Karimpour, Auteur . - 2012 . - pp. 10712–10718.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 32 (Août 2012) . - pp. 10712–10718
Mots-clés : Nanoparticles Modeling Résumé : An artificial neural network was employed to predict the cellular uptake of 109 magnetofluorescent nanoparticles (NPs) in pancreatic cancer cells on the basis of quantitative structure activity relationship method. Six descriptors chosen by combining self-organizing map and stepwise multiple linear regression (MLR) techniques were used to correlate the nanostructure of the studied particles with their bioactivity using MLR and multilayered perceptron neural network (MLP-NN) modeling techniques. For the MLR and MLP-NN models, the correlation coefficient was 0.769 and 0.934, and the root-mean-square error was 0.364 and 0.150, respectively. The results obtained after a leave-many-out cross-validation test revealed the credibility of MLP-NN for the prediction of cellular uptake of NPs. In addition, sensitivity analysis of MLP-NN model indicated that the number of hydrogen-bond donor sites in the organic coating of a NP is the predominant factor responsible for cellular uptake. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie3006947