[article]
Titre : |
Experimental and analytical study on the operation characteristics of the AHAT system |
Type de document : |
texte imprimé |
Auteurs : |
Hidefumi Araki, Auteur ; Tomomi Koganezawa, Auteur ; Chihiro Myouren, Auteur |
Année de publication : |
2012 |
Article en page(s) : |
08 p. |
Note générale : |
Génie mécanique |
Langues : |
Anglais (eng) |
Mots-clés : |
Combined cycle power stations Gas turbines Heat transfer Humidity |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
Operational flexibility, such as faster start-up time or faster load change rate, and higher thermal efficiency, have become more and more important for recent thermal power systems. The advanced humid air turbine (AHAT) system has been studied to improve operational flexibility and thermal efficiency of the gas turbine power generation system. Advanced humid air turbine is an original system which substitutes the water atomization cooling (WAC) system for the intercooler system of the HAT cycle. A 3 MW pilot plant, which is composed of a gas turbine, a humidification tower, a recuperator and a water recovery system, was built in 2006 to verify feasibility of the AHAT system.In this paper, ambient temperature effects, part-load characteristics and start-up characteristics of the AHAT system were studied both experimentally and analytically. Also, change in heat transfer characteristics of the recuperator of the 3 MW pilot plant was evaluated from Nov. 2006 to Feb. 2010. Ambient temperature effects and part-load characteristics of the 3 MW pilot plant were compared with heat and material balance calculation results. Then, these characteristics of the AHAT and the combined cycle (CC) systems were compared assuming they were composed of mid-sized industrial gas turbines.The measured cold start-up time of the 3 MW AHAT pilot plant was about 60 min, which was dominated by the heat capacities of the plant equipment. The gas turbine was operated a total of 34 times during this period (Nov. 2006 to Feb. 2010), but no interannual changes were observed in pressure drops, temperature effectiveness, and the overall heat transfer coefficient of the recuperator. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000005 [...] |
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 5 (Mai 2012) . - 08 p.
[article] Experimental and analytical study on the operation characteristics of the AHAT system [texte imprimé] / Hidefumi Araki, Auteur ; Tomomi Koganezawa, Auteur ; Chihiro Myouren, Auteur . - 2012 . - 08 p. Génie mécanique Langues : Anglais ( eng) in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 5 (Mai 2012) . - 08 p.
Mots-clés : |
Combined cycle power stations Gas turbines Heat transfer Humidity |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
Operational flexibility, such as faster start-up time or faster load change rate, and higher thermal efficiency, have become more and more important for recent thermal power systems. The advanced humid air turbine (AHAT) system has been studied to improve operational flexibility and thermal efficiency of the gas turbine power generation system. Advanced humid air turbine is an original system which substitutes the water atomization cooling (WAC) system for the intercooler system of the HAT cycle. A 3 MW pilot plant, which is composed of a gas turbine, a humidification tower, a recuperator and a water recovery system, was built in 2006 to verify feasibility of the AHAT system.In this paper, ambient temperature effects, part-load characteristics and start-up characteristics of the AHAT system were studied both experimentally and analytically. Also, change in heat transfer characteristics of the recuperator of the 3 MW pilot plant was evaluated from Nov. 2006 to Feb. 2010. Ambient temperature effects and part-load characteristics of the 3 MW pilot plant were compared with heat and material balance calculation results. Then, these characteristics of the AHAT and the combined cycle (CC) systems were compared assuming they were composed of mid-sized industrial gas turbines.The measured cold start-up time of the 3 MW AHAT pilot plant was about 60 min, which was dominated by the heat capacities of the plant equipment. The gas turbine was operated a total of 34 times during this period (Nov. 2006 to Feb. 2010), but no interannual changes were observed in pressure drops, temperature effectiveness, and the overall heat transfer coefficient of the recuperator. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000005 [...] |
|