[article]
Titre : |
The expansion-cycle evaporation turbine |
Type de document : |
texte imprimé |
Auteurs : |
N. G. Barton, Auteur |
Année de publication : |
2012 |
Article en page(s) : |
07 p. |
Note générale : |
Génie mécanique |
Langues : |
Anglais (eng) |
Mots-clés : |
Cooling Fans Gas turbines Heat engines |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
This paper investigates a continuous-flow heat engine based on evaporative cooling of hot air at reduced pressure. In this device, hot air is expanded in an expansion turbine, spray-cooled to saturation and re-compressed to ambient pressure in several stages with evaporative cooling between each stage. More work is available in expansion than is required during re-compression, so the device is a heat engine. The device provides a relatively cheap way to boost the power output of open-cycle gas turbines. The principal assumptions for the theoretical model developed herein are that air and water vapor are regarded as ideal gases with constant specific heat capacities. In the absence of losses associated with expansion and compression, the engine produces more power as the inlet temperature and the pressure ratio increase. The effects of irreversibilities are subsequently included in the expansion and compression stages, with realistic values used for the adiabatic efficiencies of turbine and fans. Purification and injection of water are also considered in the overall energy budget. As a typical result for the new engine, if the inlet air is the exhaust of a 56 MW open-cycle gas turbine, the adiabatic efficiencies of turbine and fan are 0.9, the pressure ratio is 6.5 and there is four-stage re-compression, then the power output is 20.5% that of the gas turbine. The power output is sensitive to the adiabatic efficiencies of turbine and fans. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000005 [...] |
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 5 (Mai 2012) . - 07 p.
[article] The expansion-cycle evaporation turbine [texte imprimé] / N. G. Barton, Auteur . - 2012 . - 07 p. Génie mécanique Langues : Anglais ( eng) in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 5 (Mai 2012) . - 07 p.
Mots-clés : |
Cooling Fans Gas turbines Heat engines |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
This paper investigates a continuous-flow heat engine based on evaporative cooling of hot air at reduced pressure. In this device, hot air is expanded in an expansion turbine, spray-cooled to saturation and re-compressed to ambient pressure in several stages with evaporative cooling between each stage. More work is available in expansion than is required during re-compression, so the device is a heat engine. The device provides a relatively cheap way to boost the power output of open-cycle gas turbines. The principal assumptions for the theoretical model developed herein are that air and water vapor are regarded as ideal gases with constant specific heat capacities. In the absence of losses associated with expansion and compression, the engine produces more power as the inlet temperature and the pressure ratio increase. The effects of irreversibilities are subsequently included in the expansion and compression stages, with realistic values used for the adiabatic efficiencies of turbine and fans. Purification and injection of water are also considered in the overall energy budget. As a typical result for the new engine, if the inlet air is the exhaust of a 56 MW open-cycle gas turbine, the adiabatic efficiencies of turbine and fan are 0.9, the pressure ratio is 6.5 and there is four-stage re-compression, then the power output is 20.5% that of the gas turbine. The power output is sensitive to the adiabatic efficiencies of turbine and fans. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000005 [...] |
|