Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Bernhard C. Bobusch
Documents disponibles écrits par cet auteur
Affiner la rechercheEffects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions / Steffen Terhaar in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Titre : Effects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions Type de document : texte imprimé Auteurs : Steffen Terhaar, Auteur ; Bernhard C. Bobusch, Auteur ; Christian Oliver Paschereit, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : swirl-stabilized combustors; outlet boundary conditions; reacting flow field Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : During the design and testing process of swirl-stabilized combustors, it is often impractical to maintain identical outlet boundary conditions. Furthermore, it is a common practice to intentionally change the acoustic boundary conditions of the outlet in order to suppress thermoacoustic instabilities. In the presented work the susceptibility of the reacting flow field to downstream perturbations is assessed by the application of an area contraction at the outlet. Since combustion and fuel composition are shown to be important parameters for the influence of the boundary conditions on the flow field, highly steam diluted flames are investigated in addition to dry flames at different equivalence ratios and degrees of swirl. The applied measurement techniques include particle image velocimetry, laser doppler velocimetry, and emission analysis. The results reveal a clear correlation of the susceptibility of the flow field to downstream perturbations to both the inlet swirl number and the amount of dilatation caused by the flame. The concept of an effective swirl number downstream of the flame is applied to the results and is proven to be the dominating parameter. A theoretical explanation for the influence of this parameter is provided by the usage of the well known theory of subcritical and supercritical swirling flows, where perturbations can propagate upstream solely in subcritical flows via standing waves. Knowledge of the flow state is of particular importance for the evaluation of combustion tests with differing exit boundary conditions and the results emphasize the need for realistic exit boundary conditions for numerical simulations. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Effects of outlet boundary conditions on the reacting flow field in a swirl-stabilized burner at dry and humid conditions [texte imprimé] / Steffen Terhaar, Auteur ; Bernhard C. Bobusch, Auteur ; Christian Oliver Paschereit, Auteur . - 2012 . - 09 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Mots-clés : swirl-stabilized combustors; outlet boundary conditions; reacting flow field Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : During the design and testing process of swirl-stabilized combustors, it is often impractical to maintain identical outlet boundary conditions. Furthermore, it is a common practice to intentionally change the acoustic boundary conditions of the outlet in order to suppress thermoacoustic instabilities. In the presented work the susceptibility of the reacting flow field to downstream perturbations is assessed by the application of an area contraction at the outlet. Since combustion and fuel composition are shown to be important parameters for the influence of the boundary conditions on the flow field, highly steam diluted flames are investigated in addition to dry flames at different equivalence ratios and degrees of swirl. The applied measurement techniques include particle image velocimetry, laser doppler velocimetry, and emission analysis. The results reveal a clear correlation of the susceptibility of the flow field to downstream perturbations to both the inlet swirl number and the amount of dilatation caused by the flame. The concept of an effective swirl number downstream of the flame is applied to the results and is proven to be the dominating parameter. A theoretical explanation for the influence of this parameter is provided by the usage of the well known theory of subcritical and supercritical swirling flows, where perturbations can propagate upstream solely in subcritical flows via standing waves. Knowledge of the flow state is of particular importance for the evaluation of combustion tests with differing exit boundary conditions and the results emphasize the need for realistic exit boundary conditions for numerical simulations. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] Open-loop control of combustion instabilities and the role of the flame response to two-frequency forcing / Bernhard Cosic in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 6 (Juin 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 6 (Juin 2012) . - 08 p.
Titre : Open-loop control of combustion instabilities and the role of the flame response to two-frequency forcing Type de document : texte imprimé Auteurs : Bernhard Cosic, Auteur ; Bernhard C. Bobusch, Auteur ; Jonas P. Moeck, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Combustion instabilities Open-loop control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Controlling combustion instabilities by means of open-loop forcing at non-resonant frequencies is attractive because neither a dynamic sensor signal nor a signal processor is required. On the other hand, since the mechanism by which this type of control suppresses an unstable thermoacoustic mode is inherently nonlinear, a comprehensive explanation for success (or failure) of open-loop control has not been found. The present work contributes to the understanding of this process in that it interprets open-loop forcing at non-resonant frequencies in terms of the flame's nonlinear response to a superposition of two approximately sinusoidal input signals. For a saturation-type nonlinearity, the fundamental gain at one frequency may be decreased by increasing the amplitude of a secondary frequency component in the input signal. This effect is first illustrated on the basis of an elementary model problem. In addition, an experimental investigation is conducted at an atmospheric combustor test-rig to corroborate the proposed explanation. Open-loop acoustic and fuel-flow forcing at various frequencies and amplitudes is applied at unstable operating conditions that exhibit high-amplitude limit-cycle oscillations. The effectiveness of specific forcing parameters in suppressing self-excited oscillations is correlated with flame response measurements that include a secondary forcing frequency. The results demonstrate that a reduction in the fundamental harmonic gain at the instability frequency through the additional forcing at a non-resonant frequency is one possible indicator of successful open-loop control. Since this mechanism is independent of the system acoustics, an assessment of favorable forcing parameters, which stabilize thermoacoustic oscillations, may be based solely on an investigation of burner and flame. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000006 [...] [article] Open-loop control of combustion instabilities and the role of the flame response to two-frequency forcing [texte imprimé] / Bernhard Cosic, Auteur ; Bernhard C. Bobusch, Auteur ; Jonas P. Moeck, Auteur . - 2012 . - 08 p.
Génie mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 6 (Juin 2012) . - 08 p.
Mots-clés : Combustion instabilities Open-loop control Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Controlling combustion instabilities by means of open-loop forcing at non-resonant frequencies is attractive because neither a dynamic sensor signal nor a signal processor is required. On the other hand, since the mechanism by which this type of control suppresses an unstable thermoacoustic mode is inherently nonlinear, a comprehensive explanation for success (or failure) of open-loop control has not been found. The present work contributes to the understanding of this process in that it interprets open-loop forcing at non-resonant frequencies in terms of the flame's nonlinear response to a superposition of two approximately sinusoidal input signals. For a saturation-type nonlinearity, the fundamental gain at one frequency may be decreased by increasing the amplitude of a secondary frequency component in the input signal. This effect is first illustrated on the basis of an elementary model problem. In addition, an experimental investigation is conducted at an atmospheric combustor test-rig to corroborate the proposed explanation. Open-loop acoustic and fuel-flow forcing at various frequencies and amplitudes is applied at unstable operating conditions that exhibit high-amplitude limit-cycle oscillations. The effectiveness of specific forcing parameters in suppressing self-excited oscillations is correlated with flame response measurements that include a secondary forcing frequency. The results demonstrate that a reduction in the fundamental harmonic gain at the instability frequency through the additional forcing at a non-resonant frequency is one possible indicator of successful open-loop control. Since this mechanism is independent of the system acoustics, an assessment of favorable forcing parameters, which stabilize thermoacoustic oscillations, may be based solely on an investigation of burner and flame. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000006 [...]