[article]
Titre : |
Probabilistic high-cycle fretting fatigue assessment of gas turbine engine components |
Type de document : |
texte imprimé |
Auteurs : |
Kwai S. Chan, Auteur ; Enright, Michael P., Auteur ; Patrick J. Golden, Auteur |
Année de publication : |
2012 |
Article en page(s) : |
08 p. |
Note générale : |
Génie mécanique |
Langues : |
Anglais (eng) |
Mots-clés : |
Gas turbine High-cycle fatigue Fret methods |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
High-cycle fatigue (HCF) is arguably one of the costliest sources of in-service damage in military aircraft engines. HCF of turbine blades and disks can pose a significant engine risk because fatigue failure can result from resonant vibratory stresses sustained over a relatively short time. A common approach to mitigate HCF risk is to avoid dangerous resonant vibration modes (first bending and torsion modes, etc.) and instabilities (flutter and rotating stall) in the operating range. However, it might be impossible to avoid all the resonance for all flight conditions. In this paper, a methodology is presented to assess the influences of HCF loading on the fracture risk of gas turbine engine components subjected to fretting fatigue. The methodology is based on an integration of a global finite element analysis of the disk-blade assembly, numerical solution of the singular integral equations using the CAPRI (Contact Analysis for Profiles of Random Indenters) and Worst Case Fret methods, and risk assessment using the DARWIN (Design Assessment of Reliability with Inspection) probabilistic fracture mechanics code. The methodology is illustrated for an actual military engine disk under real life loading conditions. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000006 [...] |
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 6 (Juin 2012) . - 08 p.
[article] Probabilistic high-cycle fretting fatigue assessment of gas turbine engine components [texte imprimé] / Kwai S. Chan, Auteur ; Enright, Michael P., Auteur ; Patrick J. Golden, Auteur . - 2012 . - 08 p. Génie mécanique Langues : Anglais ( eng) in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 6 (Juin 2012) . - 08 p.
Mots-clés : |
Gas turbine High-cycle fatigue Fret methods |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
High-cycle fatigue (HCF) is arguably one of the costliest sources of in-service damage in military aircraft engines. HCF of turbine blades and disks can pose a significant engine risk because fatigue failure can result from resonant vibratory stresses sustained over a relatively short time. A common approach to mitigate HCF risk is to avoid dangerous resonant vibration modes (first bending and torsion modes, etc.) and instabilities (flutter and rotating stall) in the operating range. However, it might be impossible to avoid all the resonance for all flight conditions. In this paper, a methodology is presented to assess the influences of HCF loading on the fracture risk of gas turbine engine components subjected to fretting fatigue. The methodology is based on an integration of a global finite element analysis of the disk-blade assembly, numerical solution of the singular integral equations using the CAPRI (Contact Analysis for Profiles of Random Indenters) and Worst Case Fret methods, and risk assessment using the DARWIN (Design Assessment of Reliability with Inspection) probabilistic fracture mechanics code. The methodology is illustrated for an actual military engine disk under real life loading conditions. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000006 [...] |
|