Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Dragan Djurdjanovic
Documents disponibles écrits par cet auteur
Affiner la rechercheGrowing structure multiple model systems for anomaly detection and fault diagnosis / Jianbo Liu in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 131 N° 5 (Septembre 2009)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 5 (Septembre 2009) . - 13 p.
Titre : Growing structure multiple model systems for anomaly detection and fault diagnosis Type de document : texte imprimé Auteurs : Jianbo Liu, Auteur ; Dragan Djurdjanovic, Auteur ; Kenneth Marko, Auteur Année de publication : 2009 Article en page(s) : 13 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : growing structure multiple model system; anomaly detection; nonlinear system Résumé : A new anomaly detection scheme based on growing structure multiple model system (GSMMS) is proposed in this paper to detect and quantify the effects of anomalies. The GSMMS algorithm combines the advantages of growing self-organizing networks with efficient local model parameter estimation into an integrated framework for modeling and identification of general nonlinear dynamic systems. The identified model then serves as a foundation for building an effective anomaly detection and fault diagnosis system. By utilizing the information about system operation region provided by the GSMMS, the residual errors can be analyzed locally within each operation region. This local decision making scheme can accommodate for unequally distributed residual errors across different operational regions. The performance of the newly proposed method is evaluated through anomaly detection and quantification in an electronically controlled throttle system, which is simulated using a high-fidelity engine simulation software package provided by a major automotive manufacturer for control system development. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] [article] Growing structure multiple model systems for anomaly detection and fault diagnosis [texte imprimé] / Jianbo Liu, Auteur ; Dragan Djurdjanovic, Auteur ; Kenneth Marko, Auteur . - 2009 . - 13 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N° 5 (Septembre 2009) . - 13 p.
Mots-clés : growing structure multiple model system; anomaly detection; nonlinear system Résumé : A new anomaly detection scheme based on growing structure multiple model system (GSMMS) is proposed in this paper to detect and quantify the effects of anomalies. The GSMMS algorithm combines the advantages of growing self-organizing networks with efficient local model parameter estimation into an integrated framework for modeling and identification of general nonlinear dynamic systems. The identified model then serves as a foundation for building an effective anomaly detection and fault diagnosis system. By utilizing the information about system operation region provided by the GSMMS, the residual errors can be analyzed locally within each operation region. This local decision making scheme can accommodate for unequally distributed residual errors across different operational regions. The performance of the newly proposed method is evaluated through anomaly detection and quantification in an electronically controlled throttle system, which is simulated using a high-fidelity engine simulation software package provided by a major automotive manufacturer for control system development. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] Precedent-free fault isolation in a diesel engine exhaust gas recirculation system / Michael E. Cholette in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 134 N° 3 (Mai 2012)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 134 N° 3 (Mai 2012) . - 11 p.
Titre : Precedent-free fault isolation in a diesel engine exhaust gas recirculation system Type de document : texte imprimé Auteurs : Michael E. Cholette, Auteur ; Dragan Djurdjanovic, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : Dynamic systemss Langues : Anglais (eng) Mots-clés : Fault detection and isolation (FDI) Multiple input, multiple output (MIMO) systems Exhaust gas recirculation (EGR) system Automotive engine Growing structure multiple model system (GSMMS) Index. décimale : 629.8 Résumé : In this paper, a recently introduced model-based method for precedent-free fault detection and isolation (FDI) is modified to deal with multiple input, multiple output (MIMO) systems and is applied to an automotive engine with exhaust gas recirculation (EGR) system. Using normal behavior data generated by a high fidelity engine simulation, the growing structure multiple model system (GSMMS) approach is used to construct dynamic models of normal behavior for the EGR system and its constituent subsystems. Using the GSMMS models as a foundation, anomalous behavior is detected whenever statistically significant departures of the most recent modeling residuals away from the modeling residuals displayed during normal behavior are observed. By reconnecting the anomaly detectors (ADs) to the constituent subsystems, EGR valve, cooler, and valve controller faults are isolated without the need for prior training using data corresponding to particular faulty system behaviors. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000134000003 [...] [article] Precedent-free fault isolation in a diesel engine exhaust gas recirculation system [texte imprimé] / Michael E. Cholette, Auteur ; Dragan Djurdjanovic, Auteur . - 2012 . - 11 p.
Dynamic systemss
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 134 N° 3 (Mai 2012) . - 11 p.
Mots-clés : Fault detection and isolation (FDI) Multiple input, multiple output (MIMO) systems Exhaust gas recirculation (EGR) system Automotive engine Growing structure multiple model system (GSMMS) Index. décimale : 629.8 Résumé : In this paper, a recently introduced model-based method for precedent-free fault detection and isolation (FDI) is modified to deal with multiple input, multiple output (MIMO) systems and is applied to an automotive engine with exhaust gas recirculation (EGR) system. Using normal behavior data generated by a high fidelity engine simulation, the growing structure multiple model system (GSMMS) approach is used to construct dynamic models of normal behavior for the EGR system and its constituent subsystems. Using the GSMMS models as a foundation, anomalous behavior is detected whenever statistically significant departures of the most recent modeling residuals away from the modeling residuals displayed during normal behavior are observed. By reconnecting the anomaly detectors (ADs) to the constituent subsystems, EGR valve, cooler, and valve controller faults are isolated without the need for prior training using data corresponding to particular faulty system behaviors. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000134000003 [...]