[article]
Titre : |
Optimal parameter estimation for long-term prediction in the presence of model mismatch |
Type de document : |
texte imprimé |
Auteurs : |
Ryan Sangjun Lee, Auteur ; Gregery T. Buzzard, Auteur ; Peter H. Meckl, Auteur |
Année de publication : |
2012 |
Article en page(s) : |
16 p. |
Note générale : |
Dynamic systems |
Langues : |
Anglais (eng) |
Mots-clés : |
Nonlinear multi-input multi-output (MIMO) systems Least-squares minimization Long-term prediction error MIMO nonlinear systems. |
Index. décimale : |
629.8 |
Résumé : |
For nonlinear multi-input multi-output (MIMO) systems such as multilink robotic manipulators, finding a correct, physically derived model structure is almost impossible, so that significant model mismatch is nearly inevitable. Moreover, in the presence of model mismatch, the use of least-squares minimization of the one-step-ahead prediction error (residual error) to estimate unknown parameters in a given model structure often leads to model predictions that are extremely inaccurate beyond a short time interval. In this paper, we develop a method for optimal parameter estimation for accurate long-term prediction models in the presence of significant model mismatch in practice. For many practical cases, where a correct model and the correct number of degrees of freedom for a given model structure are unknown, we combine the use of long-term prediction error with frequency-based regularization to produce more accurate long-term prediction models for actual MIMO nonlinear systems. |
DEWEY : |
629.8 |
ISSN : |
0022-0434 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000134000004 [...] |
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 134 N° 4 (Juillet 2012) . - 16 p.
[article] Optimal parameter estimation for long-term prediction in the presence of model mismatch [texte imprimé] / Ryan Sangjun Lee, Auteur ; Gregery T. Buzzard, Auteur ; Peter H. Meckl, Auteur . - 2012 . - 16 p. Dynamic systems Langues : Anglais ( eng) in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 134 N° 4 (Juillet 2012) . - 16 p.
Mots-clés : |
Nonlinear multi-input multi-output (MIMO) systems Least-squares minimization Long-term prediction error MIMO nonlinear systems. |
Index. décimale : |
629.8 |
Résumé : |
For nonlinear multi-input multi-output (MIMO) systems such as multilink robotic manipulators, finding a correct, physically derived model structure is almost impossible, so that significant model mismatch is nearly inevitable. Moreover, in the presence of model mismatch, the use of least-squares minimization of the one-step-ahead prediction error (residual error) to estimate unknown parameters in a given model structure often leads to model predictions that are extremely inaccurate beyond a short time interval. In this paper, we develop a method for optimal parameter estimation for accurate long-term prediction models in the presence of significant model mismatch in practice. For many practical cases, where a correct model and the correct number of degrees of freedom for a given model structure are unknown, we combine the use of long-term prediction error with frequency-based regularization to produce more accurate long-term prediction models for actual MIMO nonlinear systems. |
DEWEY : |
629.8 |
ISSN : |
0022-0434 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000134000004 [...] |
|