Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Stefan Ribbens
Documents disponibles écrits par cet auteur
Affiner la rechercheThe benefit of glass bead supports for efficient gas phase photocatalysis / Sammy W. Verbruggen in Chemical engineering journal, Vol. 174 N° 1 (Octobre 2011)
[article]
in Chemical engineering journal > Vol. 174 N° 1 (Octobre 2011) . - pp.318–325
Titre : The benefit of glass bead supports for efficient gas phase photocatalysis : Case study of a commercial and a synthesised photocatalyst Type de document : texte imprimé Auteurs : Sammy W. Verbruggen, Auteur ; Stefan Ribbens, Auteur ; Tom Tytgat, Auteur Année de publication : 2012 Article en page(s) : pp.318–325 Note générale : Génie chimique Langues : Anglais (eng) Mots-clés : Photocatalysis Titanium dioxide (TiO2) Coating Ethylene Trititanate nanotubes Résumé : In the field of photocatalytic air purification, the immobilisation of catalyst particles on support surfaces without loss of photon efficiency is an important challenge. Therefore, an immobilisation method involving a one-step suspension coating of pre-synthesised photocatalysts on glass beads was applied. The various benefits are exemplified in the gas phase photodegradation of ethylene. Coating of glass beads is easy, fast, cheap and offers a more efficient alternative to bulk catalyst pellets. Furthermore, this coating procedure allows to use porous, pre-synthesised catalysts to their full potential, as the surface area and morphology of the initial powder is barely altered after coating, in strong contrast to pelletising. With this technique it became possible to study the gas phase photocatalytic activity of commercial titanium dioxide, trititanate nanotubes and mixed phase anatase/trititanate nanotubes in a packed bed reactor towards the degradation of ethylene without changing the catalyst properties. Coating of glass beads with the photocatalyst revealed the superior activity of the as-prepared nanotubes, compared to TiO2 Aerolyst® 7710 in gaseous phase. ISSN : 1385-8947 En ligne : http://www.sciencedirect.com/science/article/pii/S1385894711010965 [article] The benefit of glass bead supports for efficient gas phase photocatalysis : Case study of a commercial and a synthesised photocatalyst [texte imprimé] / Sammy W. Verbruggen, Auteur ; Stefan Ribbens, Auteur ; Tom Tytgat, Auteur . - 2012 . - pp.318–325.
Génie chimique
Langues : Anglais (eng)
in Chemical engineering journal > Vol. 174 N° 1 (Octobre 2011) . - pp.318–325
Mots-clés : Photocatalysis Titanium dioxide (TiO2) Coating Ethylene Trititanate nanotubes Résumé : In the field of photocatalytic air purification, the immobilisation of catalyst particles on support surfaces without loss of photon efficiency is an important challenge. Therefore, an immobilisation method involving a one-step suspension coating of pre-synthesised photocatalysts on glass beads was applied. The various benefits are exemplified in the gas phase photodegradation of ethylene. Coating of glass beads is easy, fast, cheap and offers a more efficient alternative to bulk catalyst pellets. Furthermore, this coating procedure allows to use porous, pre-synthesised catalysts to their full potential, as the surface area and morphology of the initial powder is barely altered after coating, in strong contrast to pelletising. With this technique it became possible to study the gas phase photocatalytic activity of commercial titanium dioxide, trititanate nanotubes and mixed phase anatase/trititanate nanotubes in a packed bed reactor towards the degradation of ethylene without changing the catalyst properties. Coating of glass beads with the photocatalyst revealed the superior activity of the as-prepared nanotubes, compared to TiO2 Aerolyst® 7710 in gaseous phase. ISSN : 1385-8947 En ligne : http://www.sciencedirect.com/science/article/pii/S1385894711010965