Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gong-Yu Zhu
Documents disponibles écrits par cet auteur
Affiner la rechercheSonochemical preparation of massive CrO2 nanowires / Shao-Min Zhou in Chemical engineering journal, Vol. 174 N° 1 (Octobre 2011)
[article]
in Chemical engineering journal > Vol. 174 N° 1 (Octobre 2011) . - pp. 432–435
Titre : Sonochemical preparation of massive CrO2 nanowires Type de document : texte imprimé Auteurs : Shao-Min Zhou, Auteur ; Gong-Yu Zhu, Auteur ; Yong-Qiang Wang, Auteur Année de publication : 2012 Article en page(s) : pp. 432–435 Note générale : Génie chimique Langues : Anglais (eng) Mots-clés : Nanostructures Ferromagnetism Quantum wires Spin polarized Résumé : One-dimensional (1D) nanostructures with precise controlled morphologies have not been easily accessible, usually degrading the device performance and therefore limiting applications to various advanced nanoscale magnetism. Generally bulk chromium dioxides are prepared by solid/liquid-phase reactions at elevated pressures or the chemical vapor deposition procedure whereas a liquid synthesis at non-pressure conditions, particularly for sonochemical one, has really been a challenge. Here we report on an ultrasound fabrication of large-scale CrO2 nanowires by using CrO2Cl2 and homemade Cr2O3 hollow nanospheres for the first time. The as-synthesized products were characterized by X-ray diffraction/photoelectron spectroscopy, scanning/transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction, and superconducting quantum interference devices magnetometer, respectively. The results show the controlled nanowires with diameter of 100–200 nm possess a single crystal tetragonal structure and exhibit a colossal coercive field (1678 Oe) at room-temperature, which could have potential applications in spin filtering, high density magnetic recording, and nanosensors. The proposed chemical reaction mechanism is suggested in detail and such a colossal coercive field is tentatively explained. ISSN : 1385-8947 En ligne : http://www.sciencedirect.com/science/article/pii/S1385894711010102 [article] Sonochemical preparation of massive CrO2 nanowires [texte imprimé] / Shao-Min Zhou, Auteur ; Gong-Yu Zhu, Auteur ; Yong-Qiang Wang, Auteur . - 2012 . - pp. 432–435.
Génie chimique
Langues : Anglais (eng)
in Chemical engineering journal > Vol. 174 N° 1 (Octobre 2011) . - pp. 432–435
Mots-clés : Nanostructures Ferromagnetism Quantum wires Spin polarized Résumé : One-dimensional (1D) nanostructures with precise controlled morphologies have not been easily accessible, usually degrading the device performance and therefore limiting applications to various advanced nanoscale magnetism. Generally bulk chromium dioxides are prepared by solid/liquid-phase reactions at elevated pressures or the chemical vapor deposition procedure whereas a liquid synthesis at non-pressure conditions, particularly for sonochemical one, has really been a challenge. Here we report on an ultrasound fabrication of large-scale CrO2 nanowires by using CrO2Cl2 and homemade Cr2O3 hollow nanospheres for the first time. The as-synthesized products were characterized by X-ray diffraction/photoelectron spectroscopy, scanning/transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction, and superconducting quantum interference devices magnetometer, respectively. The results show the controlled nanowires with diameter of 100–200 nm possess a single crystal tetragonal structure and exhibit a colossal coercive field (1678 Oe) at room-temperature, which could have potential applications in spin filtering, high density magnetic recording, and nanosensors. The proposed chemical reaction mechanism is suggested in detail and such a colossal coercive field is tentatively explained. ISSN : 1385-8947 En ligne : http://www.sciencedirect.com/science/article/pii/S1385894711010102