Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur André Carvalho Bittencourt
Documents disponibles écrits par cet auteur
Affiner la rechercheStatic friction in a robot joint / André Carvalho Bittencourt in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 134 N° 5 (Septembre 2012)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 134 N° 5 (Septembre 2012) . - 10 p.
Titre : Static friction in a robot joint : modeling and identification of load and temperature effects Type de document : texte imprimé Auteurs : André Carvalho Bittencourt, Auteur ; Svante Gunnarsson, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : Dynamic systems Langues : Anglais (eng) Mots-clés : Friction Robot joint Index. décimale : 629.8 Résumé : Friction is the result of complex interactions between contacting surfaces in down to a nanoscale perspective. Depending on the application, the different models available are more or less suitable. Static friction models are typically considered to be dependent only on relative speed of interacting surfaces. However, it is known that friction can be affected by other factors than speed. In this paper, the typical friction phenomena and models used in robotics are reviewed. It is shown how such models can be represented as a sum of functions of relevant states which are linear and nonlinear in the parameters, and how the identification method described in Ref. [[1]] can be used to identify them when all states are measured. The discussion follows with a detailed experimental study of friction in a robot joint under changes of joint angle, load torque, and temperature. Justified by their significance, load torque and temperature are included in an extended static friction model. The proposed model is validated in a wide operating range, considerably improving the prediction performance compared to a standard model. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000134000005 [...] [article] Static friction in a robot joint : modeling and identification of load and temperature effects [texte imprimé] / André Carvalho Bittencourt, Auteur ; Svante Gunnarsson, Auteur . - 2012 . - 10 p.
Dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 134 N° 5 (Septembre 2012) . - 10 p.
Mots-clés : Friction Robot joint Index. décimale : 629.8 Résumé : Friction is the result of complex interactions between contacting surfaces in down to a nanoscale perspective. Depending on the application, the different models available are more or less suitable. Static friction models are typically considered to be dependent only on relative speed of interacting surfaces. However, it is known that friction can be affected by other factors than speed. In this paper, the typical friction phenomena and models used in robotics are reviewed. It is shown how such models can be represented as a sum of functions of relevant states which are linear and nonlinear in the parameters, and how the identification method described in Ref. [[1]] can be used to identify them when all states are measured. The discussion follows with a detailed experimental study of friction in a robot joint under changes of joint angle, load torque, and temperature. Justified by their significance, load torque and temperature are included in an extended static friction model. The proposed model is validated in a wide operating range, considerably improving the prediction performance compared to a standard model. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JDSMAA000134000005 [...]