Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jef Vanlaer
Documents disponibles écrits par cet auteur
Affiner la rechercheDiscriminating between critical and noncritical disturbances in (Bio)chemical batch processes using multimodel fault detection and end - quality prediction / Geert Gins in Industrial & engineering chemistry research, Vol. 51 N° 38 (Septembre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 38 (Septembre 2012) . - pp. 12375–12385
Titre : Discriminating between critical and noncritical disturbances in (Bio)chemical batch processes using multimodel fault detection and end - quality prediction Type de document : texte imprimé Auteurs : Geert Gins, Auteur ; Jef Vanlaer, Auteur ; Jan F. M. Van Impe, Auteur Année de publication : 2012 Article en page(s) : pp. 12375–12385 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Biochemical batch processes Résumé : This paper proposes a novel multimodel methodology for discriminating between critical and noncritical process disturbances in (bio)chemical batch processes, in addition to providing online prediction of batch-end quality. A multivariate multiway partial least squares (MPLS) or multiway principal component analysis (MPCA) model monitoring all available measurements is coupled with an MPLS or MPCA model monitoring only those measurements influencing the final product quality. Hence, process disturbances are labeled critical or noncritical, depending on whether they impact final quality and require immediate attention. This avoids unnecessary control actions or even early batch terminations for noncritical disturbances. The presented approach is illustrated on a simulated industrial-scale penicillin production process. On the basis of extensive simulation results, it is concluded that the proposed methodology discriminates between critical (according to a hypothesis test with 0.05 significance level) and noncritical disturbances. In addition, accurate online estimations of the batch-end product quality are provided. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202386p [article] Discriminating between critical and noncritical disturbances in (Bio)chemical batch processes using multimodel fault detection and end - quality prediction [texte imprimé] / Geert Gins, Auteur ; Jef Vanlaer, Auteur ; Jan F. M. Van Impe, Auteur . - 2012 . - pp. 12375–12385.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 38 (Septembre 2012) . - pp. 12375–12385
Mots-clés : Biochemical batch processes Résumé : This paper proposes a novel multimodel methodology for discriminating between critical and noncritical process disturbances in (bio)chemical batch processes, in addition to providing online prediction of batch-end quality. A multivariate multiway partial least squares (MPLS) or multiway principal component analysis (MPCA) model monitoring all available measurements is coupled with an MPLS or MPCA model monitoring only those measurements influencing the final product quality. Hence, process disturbances are labeled critical or noncritical, depending on whether they impact final quality and require immediate attention. This avoids unnecessary control actions or even early batch terminations for noncritical disturbances. The presented approach is illustrated on a simulated industrial-scale penicillin production process. On the basis of extensive simulation results, it is concluded that the proposed methodology discriminates between critical (according to a hypothesis test with 0.05 significance level) and noncritical disturbances. In addition, accurate online estimations of the batch-end product quality are provided. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie202386p