Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Tyler T. Norton
Documents disponibles écrits par cet auteur
Affiner la rechercheTransient oxygen permeation and surface catalytic properties of lanthanum cobaltite membrane under oxygen–methane gradient / Tyler T. Norton in Industrial & engineering chemistry research, Vol. 51 N° 39 (Octobre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 39 (Octobre 2012) . - pp. 12917–12925
Titre : Transient oxygen permeation and surface catalytic properties of lanthanum cobaltite membrane under oxygen–methane gradient Type de document : texte imprimé Auteurs : Tyler T. Norton, Auteur ; Y. S. Lin, Auteur Année de publication : 2012 Article en page(s) : pp. 12917–12925 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Oxygen permeation Ceramic membranes Résumé : Oxygen permeation through mixed-conducting ceramic membranes in an air/methane gradient is important for their applications in membrane reactors for air separation and partial oxidation of hydrocarbons. This study examines transient characteristics of oxygen permeation and surface catalytic properties of La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) membranes in an oxygen/methane gradient for an extended period of time. Upon exposure to an oxygen/methane gradient, the oxygen permeation flux of the membrane increases to a maximum at around 55 h, then decreases and reaches a steady-state value at around 200 h. The maximum and steady-state flux is approximately 60% and 30% higher than the initial flux of the fresh membrane, respectively. The surface catalytic properties of the membrane exposed to methane also change with the exposure time in a similar fashion. However, the apparent activation energy for oxygen permeation for the membranes at various stages of the transient study is nearly constant while the effects of temperature, feed pressure, and sweep flow rate on catalytic properties are also similar for the fresh and aged membranes. The surface of a LSCF membrane reacts with methane resulting in a formation of a thin porous layer which changes the surface catalytic properties. The membrane surface becomes more active for reaction with increased selectivity for carbon monoxide formation upon exposure to methane. This lowers oxygen partial pressure in the permeate side and increases the driving force for oxygen permeation and, therefore, increases oxygen permeation flux. Under the studied experimental conditions the membrane can reach steady-state for continuous operation. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301332d [article] Transient oxygen permeation and surface catalytic properties of lanthanum cobaltite membrane under oxygen–methane gradient [texte imprimé] / Tyler T. Norton, Auteur ; Y. S. Lin, Auteur . - 2012 . - pp. 12917–12925.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 39 (Octobre 2012) . - pp. 12917–12925
Mots-clés : Oxygen permeation Ceramic membranes Résumé : Oxygen permeation through mixed-conducting ceramic membranes in an air/methane gradient is important for their applications in membrane reactors for air separation and partial oxidation of hydrocarbons. This study examines transient characteristics of oxygen permeation and surface catalytic properties of La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) membranes in an oxygen/methane gradient for an extended period of time. Upon exposure to an oxygen/methane gradient, the oxygen permeation flux of the membrane increases to a maximum at around 55 h, then decreases and reaches a steady-state value at around 200 h. The maximum and steady-state flux is approximately 60% and 30% higher than the initial flux of the fresh membrane, respectively. The surface catalytic properties of the membrane exposed to methane also change with the exposure time in a similar fashion. However, the apparent activation energy for oxygen permeation for the membranes at various stages of the transient study is nearly constant while the effects of temperature, feed pressure, and sweep flow rate on catalytic properties are also similar for the fresh and aged membranes. The surface of a LSCF membrane reacts with methane resulting in a formation of a thin porous layer which changes the surface catalytic properties. The membrane surface becomes more active for reaction with increased selectivity for carbon monoxide formation upon exposure to methane. This lowers oxygen partial pressure in the permeate side and increases the driving force for oxygen permeation and, therefore, increases oxygen permeation flux. Under the studied experimental conditions the membrane can reach steady-state for continuous operation. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301332d