Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Athanasios G. Konstandopoulos
Documents disponibles écrits par cet auteur
Affiner la rechercheImproved transfer coefficients for wall-flow monolithic catalytic reactors / Margaritis Kostoglou in Industrial & engineering chemistry research, Vol. 51 N° 40 (Octobre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 40 (Octobre 2012) . - pp. 13062-13072
Titre : Improved transfer coefficients for wall-flow monolithic catalytic reactors : Energy and momentum transport Type de document : texte imprimé Auteurs : Margaritis Kostoglou, Auteur ; Edward J. Bissett, Auteur ; Athanasios G. Konstandopoulos, Auteur Année de publication : 2012 Article en page(s) : pp. 13062-13072 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Transport process Momentum Catalytic reactor Monolithic construction Résumé : Wall-flow monolithic (WFM) catalytic reactors occupy an ever increasing important position in environmental and industrial catalysis as well as in energy applications. Their performance is very frequently determined by transport (momentum, energy, and mass) limitations, driven by the market needs for lower pressure drop, efficient heat exploitation, and miniaturization. In the present problem we address the problem of deriving the appropriate single channel equations that describe heat transfer in a wall-flow monolithic (WFM) reactor with porous channels of square-cross section. The first step of the study involves setting up a self-similar hydrodynamic problem for the two-dimensional flow field in the channel cross section. This flow field depends only on the so-called wall Reynolds number. It is shown that the self-similarity fails for large values of wall Reynolds number. The second step involves setting up the Graetz problem for the flow velocity profile found in the first step and solving for the asymptotic Nusselt number. This Nusselt number depends on the Prandtl number in addition to the wall Reynolds dependence through the flow-field. Correlations for the Nusselt number as a function of wall Reynolds and Prandtl numbers are given to facilitate the inclusion of these effects into standard practice. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26451455 [article] Improved transfer coefficients for wall-flow monolithic catalytic reactors : Energy and momentum transport [texte imprimé] / Margaritis Kostoglou, Auteur ; Edward J. Bissett, Auteur ; Athanasios G. Konstandopoulos, Auteur . - 2012 . - pp. 13062-13072.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 40 (Octobre 2012) . - pp. 13062-13072
Mots-clés : Transport process Momentum Catalytic reactor Monolithic construction Résumé : Wall-flow monolithic (WFM) catalytic reactors occupy an ever increasing important position in environmental and industrial catalysis as well as in energy applications. Their performance is very frequently determined by transport (momentum, energy, and mass) limitations, driven by the market needs for lower pressure drop, efficient heat exploitation, and miniaturization. In the present problem we address the problem of deriving the appropriate single channel equations that describe heat transfer in a wall-flow monolithic (WFM) reactor with porous channels of square-cross section. The first step of the study involves setting up a self-similar hydrodynamic problem for the two-dimensional flow field in the channel cross section. This flow field depends only on the so-called wall Reynolds number. It is shown that the self-similarity fails for large values of wall Reynolds number. The second step involves setting up the Graetz problem for the flow velocity profile found in the first step and solving for the asymptotic Nusselt number. This Nusselt number depends on the Prandtl number in addition to the wall Reynolds dependence through the flow-field. Correlations for the Nusselt number as a function of wall Reynolds and Prandtl numbers are given to facilitate the inclusion of these effects into standard practice. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26451455