Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Andrés T. Aguayo
Documents disponibles écrits par cet auteur
Affiner la rechercheDeactivation kinetics for direct dimethyl ether synthesis on a CuO−ZnO−Al2O3/γ-Al2O3 catalyst / Sierra, Irene in Industrial & engineering chemistry research, Vol. 49 N° 2 (Janvier 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 2 (Janvier 2010) . - pp 481–489
Titre : Deactivation kinetics for direct dimethyl ether synthesis on a CuO−ZnO−Al2O3/γ-Al2O3 catalyst Type de document : texte imprimé Auteurs : Sierra, Irene, Auteur ; Erena, Javier, Auteur ; Andrés T. Aguayo, Auteur Année de publication : 2010 Article en page(s) : pp 481–489 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Kinetic Catalyst Dimethyl ether. Résumé : A kinetic model has been established for the deactivation of a CuO−ZnO−Al2O3/γ-Al2O3 catalyst in the direct synthesis of dimethyl ether. The model allows calculating the effect of the operating conditions and the evolution of component concentration in the reaction medium (dimethyl ether, methanol, paraffins, H2, CO, CO2, and H2O) with time on stream. The results of the model fit the experimental results in a wide range of conditions: 225−350 °C; 10−40 bar; space time, 0.1−68.0 (g of catalyst) h (mol of reactants)−1; molar ratio (H2/CO) in the feed, 2−4; time on stream, 30 h. The model considers the cause of deactivation to be coke deposition on the metallic function and that this coke is formed by degradation of oxygenates (dimethyl ether and methanol). The effect of water in the reaction medium has been quantitatively considered in the kinetic model, whose drawback is the attenuation of the methanol synthesis rate and whose benefit is the attenuation of deactivation by coke deposition. The kinetic model is useful for predicting the influence of water in the feed with syngas as a strategy to attenuate deactivation, which is insignificant for a H2O/(H2 + CO) molar ratio of around 0.20, although it causes a slight decrease in initial catalyst activity. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900978a [article] Deactivation kinetics for direct dimethyl ether synthesis on a CuO−ZnO−Al2O3/γ-Al2O3 catalyst [texte imprimé] / Sierra, Irene, Auteur ; Erena, Javier, Auteur ; Andrés T. Aguayo, Auteur . - 2010 . - pp 481–489.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 2 (Janvier 2010) . - pp 481–489
Mots-clés : Kinetic Catalyst Dimethyl ether. Résumé : A kinetic model has been established for the deactivation of a CuO−ZnO−Al2O3/γ-Al2O3 catalyst in the direct synthesis of dimethyl ether. The model allows calculating the effect of the operating conditions and the evolution of component concentration in the reaction medium (dimethyl ether, methanol, paraffins, H2, CO, CO2, and H2O) with time on stream. The results of the model fit the experimental results in a wide range of conditions: 225−350 °C; 10−40 bar; space time, 0.1−68.0 (g of catalyst) h (mol of reactants)−1; molar ratio (H2/CO) in the feed, 2−4; time on stream, 30 h. The model considers the cause of deactivation to be coke deposition on the metallic function and that this coke is formed by degradation of oxygenates (dimethyl ether and methanol). The effect of water in the reaction medium has been quantitatively considered in the kinetic model, whose drawback is the attenuation of the methanol synthesis rate and whose benefit is the attenuation of deactivation by coke deposition. The kinetic model is useful for predicting the influence of water in the feed with syngas as a strategy to attenuate deactivation, which is insignificant for a H2O/(H2 + CO) molar ratio of around 0.20, although it causes a slight decrease in initial catalyst activity. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie900978a Effect of cofeeding butane with methanol on the deactivation by coke of a HZSM-5 zeolite catalyst / Andrés T. Aguayo in Industrial & engineering chemistry research, Vol. 50 N° 17 (Septembre 2011)
[article]
in Industrial & engineering chemistry research > Vol. 50 N° 17 (Septembre 2011) . - pp. 9980-9988
Titre : Effect of cofeeding butane with methanol on the deactivation by coke of a HZSM-5 zeolite catalyst Type de document : texte imprimé Auteurs : Andrés T. Aguayo, Auteur ; Pedro Castano, Auteur ; Diana Mier, Auteur Année de publication : 2011 Article en page(s) : pp. 9980-9988 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Catalyst Zeolite Deactivation Résumé : The deactivation by coke of a HZSM-5 zeolite catalyst has been studied in the transformation of methanol into hydrocarbons by cofeeding butane (n-butane). This reaction is of interest as an energy-neutral integrated process that enhances the activity in the cracking reaction and upgrades the paraffins formed as byproducts. The process was carried out in a fixed-bed reactor under the following conditions: temperature, 550 °C; pressure, 1 bar; space time, 2.4 and 4.8 (g of catalyst) h (mol of CH2)-1; time on stream, 5 h; methanol/butane molar ratio, up to 16/1. The coke was characterized using several analytical techniques (TG-TPO, FTIR, Raman, and NMR spectroscopies), and the effects of cofeeding butane on the coke composition and structure were determined. The results in terms of coke content and composition, are explained in terms of the different pathways of methanol and butane transformation. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24483641 [article] Effect of cofeeding butane with methanol on the deactivation by coke of a HZSM-5 zeolite catalyst [texte imprimé] / Andrés T. Aguayo, Auteur ; Pedro Castano, Auteur ; Diana Mier, Auteur . - 2011 . - pp. 9980-9988.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 50 N° 17 (Septembre 2011) . - pp. 9980-9988
Mots-clés : Catalyst Zeolite Deactivation Résumé : The deactivation by coke of a HZSM-5 zeolite catalyst has been studied in the transformation of methanol into hydrocarbons by cofeeding butane (n-butane). This reaction is of interest as an energy-neutral integrated process that enhances the activity in the cracking reaction and upgrades the paraffins formed as byproducts. The process was carried out in a fixed-bed reactor under the following conditions: temperature, 550 °C; pressure, 1 bar; space time, 2.4 and 4.8 (g of catalyst) h (mol of CH2)-1; time on stream, 5 h; methanol/butane molar ratio, up to 16/1. The coke was characterized using several analytical techniques (TG-TPO, FTIR, Raman, and NMR spectroscopies), and the effects of cofeeding butane on the coke composition and structure were determined. The results in terms of coke content and composition, are explained in terms of the different pathways of methanol and butane transformation. DEWEY : 660 ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=24483641 Joint Transformation of Methanol and n-Butane into Olefins on an HZSM-5 Zeolite Catalyst in Reaction–Regeneration Cycles / Andrés T. Aguayo in Industrial & engineering chemistry research, Vol. 51 N° 40 (Octobre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 40 (Octobre 2012) . - pp. 13073–13084
Titre : Joint Transformation of Methanol and n-Butane into Olefins on an HZSM-5 Zeolite Catalyst in Reaction–Regeneration Cycles Type de document : texte imprimé Auteurs : Andrés T. Aguayo, Auteur ; Ana G. Gayubo, Auteur ; Ainara Ateka, Auteur Année de publication : 2012 Article en page(s) : pp. 13073–13084 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Methanol Zeolite Catalys Résumé : The joint transformation of methanol and n-butane has been studied under energy-neutral conditions (methanol/n-butane molar ratio of 3/1) on an HZSM-5 zeolite catalyst in order to determine the reactivation kinetics and optimize the process conditions for maximizing the light olefin production rate. The methodology for determining the reactivation kinetics combines the kinetic models for the main reaction and deactivation (determined in previous studies), as well as the experimental reactivation results obtained for a reaction step (at 500 and 550 °C) subsequent to regeneration by coke combustion with air (at 550 °C, up to 120 min). By simulation of the operation in reaction–regeneration cycles, an optimum average olefin production rate of 22 mol/(gcatalyst h) is obtained for a reaction temperature of 500 °C, space time of 0.37 gcatalyst h mol–1, time on stream of 40 min, and partial reactivation by coke combustion for 15 min. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301142k [article] Joint Transformation of Methanol and n-Butane into Olefins on an HZSM-5 Zeolite Catalyst in Reaction–Regeneration Cycles [texte imprimé] / Andrés T. Aguayo, Auteur ; Ana G. Gayubo, Auteur ; Ainara Ateka, Auteur . - 2012 . - pp. 13073–13084.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 40 (Octobre 2012) . - pp. 13073–13084
Mots-clés : Methanol Zeolite Catalys Résumé : The joint transformation of methanol and n-butane has been studied under energy-neutral conditions (methanol/n-butane molar ratio of 3/1) on an HZSM-5 zeolite catalyst in order to determine the reactivation kinetics and optimize the process conditions for maximizing the light olefin production rate. The methodology for determining the reactivation kinetics combines the kinetic models for the main reaction and deactivation (determined in previous studies), as well as the experimental reactivation results obtained for a reaction step (at 500 and 550 °C) subsequent to regeneration by coke combustion with air (at 550 °C, up to 120 min). By simulation of the operation in reaction–regeneration cycles, an optimum average olefin production rate of 22 mol/(gcatalyst h) is obtained for a reaction temperature of 500 °C, space time of 0.37 gcatalyst h mol–1, time on stream of 40 min, and partial reactivation by coke combustion for 15 min. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301142k Kinetic modeling of n-butane cracking on HZSM-5 zeolite catalyst / Diana Mier in Industrial & engineering chemistry research, Vol. 49 N° 18 (Septembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 18 (Septembre 2010) . - pp. 8415–8423
Titre : Kinetic modeling of n-butane cracking on HZSM-5 zeolite catalyst Type de document : texte imprimé Auteurs : Diana Mier, Auteur ; Andrés T. Aguayo, Auteur ; Monica Gamero, Auteur Année de publication : 2010 Article en page(s) : pp. 8415–8423 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Modeling Catalyst Zeolite Cracking Kinetic model Résumé : A kinetic model of lumps has been established for n-butane cracking over HZSM-5 zeolitc catalyst (SiO2/ Al2O3 = 30) in the 400-550 °C range, based on the results obtained in a fixed bed reactor (space time, up to 2.4 (g of catalyst) h (mol CH2)-1; He/n-butane molar ratio in the feed, up to 6/l; time on stream, 5 h). The model allows quantifying the distribution of the lumps of products (C2-C4 olefins, C2-C4 paraffins, methane, and C5-C10 components) in a wide range of temperatures, partial pressures of hydrocarbons in the reaction medium, and space times. The kinetic model steps for the transformation of n-butane into olefins and of olefins into paraffins and C5-C10 are second order with respect to the reactant, whereas the remaining steps are first order with respect to each reactant. When the target is the production of C2-C4 oletins, the yield is limited to 12%, at 550 °C. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23213975 [article] Kinetic modeling of n-butane cracking on HZSM-5 zeolite catalyst [texte imprimé] / Diana Mier, Auteur ; Andrés T. Aguayo, Auteur ; Monica Gamero, Auteur . - 2010 . - pp. 8415–8423.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 18 (Septembre 2010) . - pp. 8415–8423
Mots-clés : Modeling Catalyst Zeolite Cracking Kinetic model Résumé : A kinetic model of lumps has been established for n-butane cracking over HZSM-5 zeolitc catalyst (SiO2/ Al2O3 = 30) in the 400-550 °C range, based on the results obtained in a fixed bed reactor (space time, up to 2.4 (g of catalyst) h (mol CH2)-1; He/n-butane molar ratio in the feed, up to 6/l; time on stream, 5 h). The model allows quantifying the distribution of the lumps of products (C2-C4 olefins, C2-C4 paraffins, methane, and C5-C10 components) in a wide range of temperatures, partial pressures of hydrocarbons in the reaction medium, and space times. The kinetic model steps for the transformation of n-butane into olefins and of olefins into paraffins and C5-C10 are second order with respect to the reactant, whereas the remaining steps are first order with respect to each reactant. When the target is the production of C2-C4 oletins, the yield is limited to 12%, at 550 °C. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=23213975 Kinetics of methanol transformation into hydrocarbons on a HZSM - 5 zeolite catalyst at high temperature (400 - 550 °C) / Andrés T. Aguayo in Industrial & engineering chemistry research, Vol. 49 N° 24 (Décembre 2010)
[article]
in Industrial & engineering chemistry research > Vol. 49 N° 24 (Décembre 2010) . - pp. 12371–12378
Titre : Kinetics of methanol transformation into hydrocarbons on a HZSM - 5 zeolite catalyst at high temperature (400 - 550 °C) Type de document : texte imprimé Auteurs : Andrés T. Aguayo, Auteur ; Diana Mier, Auteur ; Ana G. Gayubo, Auteur Année de publication : 2011 Article en page(s) : pp. 12371–12378 Note générale : Chimie industrielle Langues : Anglais (eng) Mots-clés : Kinetics Zeolite catalyst Résumé : A kinetic model of seven lumps has been established which allows the quantification of the product distribution (oxygenates, n-butane, C2−C4 olefins, C2−C4 paraffins (without n-butane), C5−C10 fraction, methane) in the transformation of methanol into hydrocarbons at high temperature (400−550 °C) on a HZSM-5 zeolite catalyst (SiO2/Al2O3 = 30) with high acidic strength (>120 kJ (mol of NH3)−1) and agglomerated with bentonite and alumina. The kinetic model fits well the experimental data obtained in a fixed bed reactor, from small values of space time in which the formation of hydrocarbons is incipient, to a space time of 2.4 (g of catalyst) h (mol CH2) −1 for a complete conversion of methanol. The rise in temperature increases the yield of C2−C4 olefins, so that the maximum value (50%) is obtained at the ceiling temperature for the hydrothermal stability of the HZSM-5 (550 °C) and space times between 0.6 and 1 (g of catalyst) h (mol CH2)−1. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie101047f [article] Kinetics of methanol transformation into hydrocarbons on a HZSM - 5 zeolite catalyst at high temperature (400 - 550 °C) [texte imprimé] / Andrés T. Aguayo, Auteur ; Diana Mier, Auteur ; Ana G. Gayubo, Auteur . - 2011 . - pp. 12371–12378.
Chimie industrielle
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 49 N° 24 (Décembre 2010) . - pp. 12371–12378
Mots-clés : Kinetics Zeolite catalyst Résumé : A kinetic model of seven lumps has been established which allows the quantification of the product distribution (oxygenates, n-butane, C2−C4 olefins, C2−C4 paraffins (without n-butane), C5−C10 fraction, methane) in the transformation of methanol into hydrocarbons at high temperature (400−550 °C) on a HZSM-5 zeolite catalyst (SiO2/Al2O3 = 30) with high acidic strength (>120 kJ (mol of NH3)−1) and agglomerated with bentonite and alumina. The kinetic model fits well the experimental data obtained in a fixed bed reactor, from small values of space time in which the formation of hydrocarbons is incipient, to a space time of 2.4 (g of catalyst) h (mol CH2) −1 for a complete conversion of methanol. The rise in temperature increases the yield of C2−C4 olefins, so that the maximum value (50%) is obtained at the ceiling temperature for the hydrothermal stability of the HZSM-5 (550 °C) and space times between 0.6 and 1 (g of catalyst) h (mol CH2)−1. DEWEY : 660 ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie101047f Olefin production by catalytic transformation of crude bio-oil in a two-step process / Ana G. Gayubo in Industrial & engineering chemistry research, Vol. 49 N° 1 (Janvier 2010)
Permalink