Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur David K. Hubler
Documents disponibles écrits par cet auteur
Affiner la rechercheSustainable electrochemical regeneration of copper-loaded ion exchange media / David K. Hubler in Industrial & engineering chemistry research, Vol. 51 N° 40 (Octobre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 40 (Octobre 2012) . - pp. 13259–13267
Titre : Sustainable electrochemical regeneration of copper-loaded ion exchange media Type de document : texte imprimé Auteurs : David K. Hubler, Auteur ; James C. Baygents, Auteur ; James Farrell, Auteur Année de publication : 2012 Article en page(s) : pp. 13259–13267 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Electrochemical regeneration Résumé : An electrochemical method for regenerating copper-loaded ion exchange media was investigated. The method involved circulating a moderate pH regenerant solution between a bed of ion exchange media and an electrochemical cell. The electrochemical regeneration process eliminates more than 99% of the acid and base use associated with conventional regeneration, consumes no water, produces metallic copper, and eliminates the production of a copper-laden sludge. Experiments were performed measuring copper plating rates as a function of the aqueous copper concentration, cell current, and flow rate. Experiments were also performed to determine the equilibrium partitioning of copper ions between the solution and the ion exchange media under loading and regeneration conditions. A mathematical model was developed and calibrated using experimental data, to provide guidance for the design of electrochemical ion exchange regeneration systems. The model incorporates the plating kinetics, the stripping of copper from the resin, and the equilibrium isotherm and predicts aqueous and adsorbed copper concentrations during the regeneration process. The model indicates that, in 789 min, 90% of copper can be removed from a resin loaded with 50 mg(Cu)/g(resin). An economic analysis indicates that energy costs for plating are less than 1% of chemical costs for conventional ion exchange regeneration. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301443u [article] Sustainable electrochemical regeneration of copper-loaded ion exchange media [texte imprimé] / David K. Hubler, Auteur ; James C. Baygents, Auteur ; James Farrell, Auteur . - 2012 . - pp. 13259–13267.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 40 (Octobre 2012) . - pp. 13259–13267
Mots-clés : Electrochemical regeneration Résumé : An electrochemical method for regenerating copper-loaded ion exchange media was investigated. The method involved circulating a moderate pH regenerant solution between a bed of ion exchange media and an electrochemical cell. The electrochemical regeneration process eliminates more than 99% of the acid and base use associated with conventional regeneration, consumes no water, produces metallic copper, and eliminates the production of a copper-laden sludge. Experiments were performed measuring copper plating rates as a function of the aqueous copper concentration, cell current, and flow rate. Experiments were also performed to determine the equilibrium partitioning of copper ions between the solution and the ion exchange media under loading and regeneration conditions. A mathematical model was developed and calibrated using experimental data, to provide guidance for the design of electrochemical ion exchange regeneration systems. The model incorporates the plating kinetics, the stripping of copper from the resin, and the equilibrium isotherm and predicts aqueous and adsorbed copper concentrations during the regeneration process. The model indicates that, in 789 min, 90% of copper can be removed from a resin loaded with 50 mg(Cu)/g(resin). An economic analysis indicates that energy costs for plating are less than 1% of chemical costs for conventional ion exchange regeneration. ISSN : 0888-5885 En ligne : http://pubs.acs.org/doi/abs/10.1021/ie301443u