Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Jae Won Lee
Documents disponibles écrits par cet auteur
Affiner la rechercheCO2 bubble absorption enhancement in methanol-based nanofluids / Jae Won Lee in International journal of refrigeration, Vol. 34 N° 8 (Décembre 2011)
[article]
in International journal of refrigeration > Vol. 34 N° 8 (Décembre 2011) . - pp. 1727–1733
Titre : CO2 bubble absorption enhancement in methanol-based nanofluids Titre original : Amélioration de l'absorption des bulles de CO2 dans les nanofluides à base de méthanol Type de document : texte imprimé Auteurs : Jae Won Lee, Auteur ; Jung-Yeul Jung, Auteur ; Soon-Geul Lee, Auteur Année de publication : 2012 Article en page(s) : pp. 1727–1733 Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Absorption Enhancement Bubble Carbon dioxide Methanol Particle Résumé : In this study, the nanoparticles (i.e. SiO2 and Al2O3 nanoparticles) and methanol are combined into SiO2/methanol and Al2O3/methanol nanofluids to enhance the CO2 absorption rate of the base fluid (methanol). The absorption experiments are performed in the bubble type absorber system equipped with mass flow controller (MFC), mass flow meter (MFM) and silica gel (which can remove the methanol vapor existing in the outlet gases). The parametric analysis on the effects of the particle species and concentrations on CO2 bubble absorption rate is carried out. The particle concentration ranges from 0.005 to 0.5 vol%. It is found that the CO2 absorption rate is enhanced up to 4.5% at 0.01 vol% of Al2O3/methanol nanofluids at 20 °C, and 5.6% at 0.01 vol% of SiO2/methanol nanofluids at −20 °C, respectively. ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711001915 [article] CO2 bubble absorption enhancement in methanol-based nanofluids = Amélioration de l'absorption des bulles de CO2 dans les nanofluides à base de méthanol [texte imprimé] / Jae Won Lee, Auteur ; Jung-Yeul Jung, Auteur ; Soon-Geul Lee, Auteur . - 2012 . - pp. 1727–1733.
Génie mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 34 N° 8 (Décembre 2011) . - pp. 1727–1733
Mots-clés : Absorption Enhancement Bubble Carbon dioxide Methanol Particle Résumé : In this study, the nanoparticles (i.e. SiO2 and Al2O3 nanoparticles) and methanol are combined into SiO2/methanol and Al2O3/methanol nanofluids to enhance the CO2 absorption rate of the base fluid (methanol). The absorption experiments are performed in the bubble type absorber system equipped with mass flow controller (MFC), mass flow meter (MFM) and silica gel (which can remove the methanol vapor existing in the outlet gases). The parametric analysis on the effects of the particle species and concentrations on CO2 bubble absorption rate is carried out. The particle concentration ranges from 0.005 to 0.5 vol%. It is found that the CO2 absorption rate is enhanced up to 4.5% at 0.01 vol% of Al2O3/methanol nanofluids at 20 °C, and 5.6% at 0.01 vol% of SiO2/methanol nanofluids at −20 °C, respectively. ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711001915 Ethylbenzene dehydrogenation into styrene / Jae Won Lee in Industrial & engineering chemistry research, Vol. 47 N° 23 (Décembre 2008)
[article]
in Industrial & engineering chemistry research > Vol. 47 N° 23 (Décembre 2008) . - p. 9183–9194
Titre : Ethylbenzene dehydrogenation into styrene : kinetic modeling and reactor simulation Type de document : texte imprimé Auteurs : Jae Won Lee, Auteur ; Gilbert F. Froment, Auteur Année de publication : 2009 Article en page(s) : p. 9183–9194 Note générale : Chemistry engineering Langues : Anglais (eng) Mots-clés : Ethylbenzene Dehydrogenation into Styrene Kinetic Modeling and Reactor Simulation Résumé : A set of intrinsic rate equations based on the Hougen—Watson formalism was derived for the dehydrogenation of ethylbenzene into styrene on a commercial potassium-promoted iron catalyst. The model discrimination and parameter estimation was based on an extensive set of experiments that were conducted in a tubular reactor. Experimental data were obtained for a range of temperatures, space times, and feed molar ratios of steam to ethylbenzene, styrene to ethylbenzene, and hydrogen to ethylbenzene. All the estimated parameters satisfied the statistical tests and physicochemical criteria, and the kinetic model yielded an excellent fit of the experimental data. The model was applied in the simulation of the dehydrogenation in industrial multibed adiabatic reactors with either axial or radial flow and accounting also for thermal radical-type reactions, internal diffusion limitations, coke formation, and gasification. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie071098u [article] Ethylbenzene dehydrogenation into styrene : kinetic modeling and reactor simulation [texte imprimé] / Jae Won Lee, Auteur ; Gilbert F. Froment, Auteur . - 2009 . - p. 9183–9194.
Chemistry engineering
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 47 N° 23 (Décembre 2008) . - p. 9183–9194
Mots-clés : Ethylbenzene Dehydrogenation into Styrene Kinetic Modeling and Reactor Simulation Résumé : A set of intrinsic rate equations based on the Hougen—Watson formalism was derived for the dehydrogenation of ethylbenzene into styrene on a commercial potassium-promoted iron catalyst. The model discrimination and parameter estimation was based on an extensive set of experiments that were conducted in a tubular reactor. Experimental data were obtained for a range of temperatures, space times, and feed molar ratios of steam to ethylbenzene, styrene to ethylbenzene, and hydrogen to ethylbenzene. All the estimated parameters satisfied the statistical tests and physicochemical criteria, and the kinetic model yielded an excellent fit of the experimental data. The model was applied in the simulation of the dehydrogenation in industrial multibed adiabatic reactors with either axial or radial flow and accounting also for thermal radical-type reactions, internal diffusion limitations, coke formation, and gasification. En ligne : http://pubs.acs.org/doi/abs/10.1021/ie071098u