Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur S. S. Bandyopadhyay
Documents disponibles écrits par cet auteur
Affiner la rechercheNumerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model / T. Dutta in International journal of refrigeration, Vol. 34 N° 8 (Décembre 2011)
[article]
in International journal of refrigeration > Vol. 34 N° 8 (Décembre 2011) . - pp. 2118–2128
Titre : Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model : Etude numérique des gaz et de la séparation de l’énergie dans un tube vortex Ranque-Hilsch à l’aide d’un modèle employant un gaz réel Type de document : texte imprimé Auteurs : T. Dutta, Auteur ; K.P. Sinhamahapatra, Auteur ; S. S. Bandyopadhyay, Auteur Année de publication : 2012 Article en page(s) : pp. 2118–2128 Note générale : Génie mécanique Langues : Anglais (eng) Mots-clés : Vortex tube Computational fluid dynamics Temperature Thermal diffusion Résumé : A three dimensional Computational Fluid Dynamics (CFD) model is used to investigate the phenomena of energy and species separation in a vortex tube (VT) with compressed air at normal atmospheric temperature and cryogenic temperature as the working fluid. In this work the NIST real gas model is used for the first time to accurately compute the thermodynamic and transport properties of air inside the VT. CFD simulations are carried out using the perfect gas law as well. The computed performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) at normal atmospheric temperature obtained with both the real gas model and the perfect gas law are compared with the experimental results. The separation of air into its main components, i.e. oxygen and nitrogen is observed, although the separation effect is very small. The magnitudes of both the energy separation and the species separation at cryogenic temperature were found to be smaller than those at normal atmospheric temperature. ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711001447 [article] Numerical investigation of gas species and energy separation in the Ranque–Hilsch vortex tube using real gas model : Etude numérique des gaz et de la séparation de l’énergie dans un tube vortex Ranque-Hilsch à l’aide d’un modèle employant un gaz réel [texte imprimé] / T. Dutta, Auteur ; K.P. Sinhamahapatra, Auteur ; S. S. Bandyopadhyay, Auteur . - 2012 . - pp. 2118–2128.
Génie mécanique
Langues : Anglais (eng)
in International journal of refrigeration > Vol. 34 N° 8 (Décembre 2011) . - pp. 2118–2128
Mots-clés : Vortex tube Computational fluid dynamics Temperature Thermal diffusion Résumé : A three dimensional Computational Fluid Dynamics (CFD) model is used to investigate the phenomena of energy and species separation in a vortex tube (VT) with compressed air at normal atmospheric temperature and cryogenic temperature as the working fluid. In this work the NIST real gas model is used for the first time to accurately compute the thermodynamic and transport properties of air inside the VT. CFD simulations are carried out using the perfect gas law as well. The computed performance curves (hot and cold outlet temperatures versus hot outlet mass fraction) at normal atmospheric temperature obtained with both the real gas model and the perfect gas law are compared with the experimental results. The separation of air into its main components, i.e. oxygen and nitrogen is observed, although the separation effect is very small. The magnitudes of both the energy separation and the species separation at cryogenic temperature were found to be smaller than those at normal atmospheric temperature. ISSN : 0140-7007 En ligne : http://www.sciencedirect.com/science/article/pii/S0140700711001447