Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur M. Ramdin
Documents disponibles écrits par cet auteur
Affiner la rechercheComputational fluid dynamics modeling of Benjamin and Taylor bubbles in two-phase flow in pipes / M. Ramdin in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 4 (Avril 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 4 (Avril 2012) . - 08 p.
Titre : Computational fluid dynamics modeling of Benjamin and Taylor bubbles in two-phase flow in pipes Type de document : texte imprimé Auteurs : M. Ramdin, Auteur ; Ruud Henkes, Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : three-dimensional computational fluid dynamics (CFD); pipelines; fluid (VOF) multiphase model; Benjamin bubble; Taylor bubble; nondimensionalization Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : There is an increasing interest in applying three-dimensional computational fluid dynamics (CFD) for multiphase flow transport in pipelines, e.g., in the oil and gas industry. In this study, the volume of fluid (VOF) multiphase model in a commercial CFD code was used to benchmark the capabilities. Two basic flow structures, namely, the Benjamin bubble and the Taylor bubble, are considered. These two structures are closely related to the slug flow regime, which is a common flow pattern encountered in multiphase transport pipelines. After nondimensionalization, the scaled bubble velocity (Froude number) is only dependent on the Reynolds number and on the Eötvös number, which represent the effect of viscosity and surface tension, respectively. Simulations were made for a range of Reynolds numbers and Eötvös numbers (including the limits of vanishing viscosity and surface tension), and the results were compared with the existing experiments and analytical expressions. Overall, there is very good agreement. An exception is the simulation for the 2D Benjamin bubble at a low Eötvös number (i.e., large surface tension effect) which deviates from the experiments, even at a refined numerical grid. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000004 [...] [article] Computational fluid dynamics modeling of Benjamin and Taylor bubbles in two-phase flow in pipes [texte imprimé] / M. Ramdin, Auteur ; Ruud Henkes, Auteur . - 2012 . - 08 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 4 (Avril 2012) . - 08 p.
Mots-clés : three-dimensional computational fluid dynamics (CFD); pipelines; fluid (VOF) multiphase model; Benjamin bubble; Taylor bubble; nondimensionalization Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : There is an increasing interest in applying three-dimensional computational fluid dynamics (CFD) for multiphase flow transport in pipelines, e.g., in the oil and gas industry. In this study, the volume of fluid (VOF) multiphase model in a commercial CFD code was used to benchmark the capabilities. Two basic flow structures, namely, the Benjamin bubble and the Taylor bubble, are considered. These two structures are closely related to the slug flow regime, which is a common flow pattern encountered in multiphase transport pipelines. After nondimensionalization, the scaled bubble velocity (Froude number) is only dependent on the Reynolds number and on the Eötvös number, which represent the effect of viscosity and surface tension, respectively. Simulations were made for a range of Reynolds numbers and Eötvös numbers (including the limits of vanishing viscosity and surface tension), and the results were compared with the existing experiments and analytical expressions. Overall, there is very good agreement. An exception is the simulation for the 2D Benjamin bubble at a low Eötvös number (i.e., large surface tension effect) which deviates from the experiments, even at a refined numerical grid. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000004 [...]