Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Risa Okita
Documents disponibles écrits par cet auteur
Affiner la rechercheExperimental and computational investigations to evaluate the effects of fluid viscosity and particle size on erosion damage / Risa Okita in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 6 (Juin 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 6 (Juin 2012) . - 13 p.
Titre : Experimental and computational investigations to evaluate the effects of fluid viscosity and particle size on erosion damage Type de document : texte imprimé Auteurs : Risa Okita, Auteur ; Yongli Zhang, Auteur ; Brenton S. McLaury, Auteur Année de publication : 2012 Article en page(s) : 13 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : erosion modeling; CFD; viscosity; prticle size Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Zhang et al. (2006) utilized computational fluid dynamics (CFD) to examine the validity of erosion models that have been implemented into CFD codes to predict solid-particle erosion in air and water for inconel 625. This work is an extension of Zhang's work and is presented as a step toward obtaining a better understanding of the effects of fluid viscosity and sand-particle size on measured and calculated erosion ratios, where erosion ratio is defined as the ratio of mass loss of material to mass of solid particles. The erosion ratios of aluminum 6061-T6 were measured for direct impingement conditions of a submerged jet. Fluid viscosities of 1, 10, 25, and 50 cP and sand-particle sizes of 20, 150, and 300 µm were tested. The average fluid speed of the jet was maintained at 10 m/s. Erosion data show that erosion ratios for the 20- and 150-µm particles are reduced as the viscosity is increased, whereas, surprisingly, the erosion ratios for the 300-µm particles do not seem to change much for the higher viscosities. For all viscosities considered, larger particles produced higher erosion ratios, for the same mass of sand, than smaller particles. Concurrently, an erosion equation has been generated based on erosion testing of the same material in air. The new erosion model has been compared to available models and has been implemented into a commercially available CFD code to predict erosion ratios for a variety of flow conditions, flow geometries, and particle sizes. Because particle speed and impact angle greatly influence erosion ratios of the material, calculated particle speeds were compared with measurements. Comparisons reveal that, as the particles penetrate the near wall shear layer, particles in the higher viscosity liquids tend to slow down more rapidly than particles in the lower viscosity liquids. In addition, CFD predictions and particle-speed measurements are used to explain why the erosion data for larger particles is less sensitive to the increased viscosities. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000006 [...] [article] Experimental and computational investigations to evaluate the effects of fluid viscosity and particle size on erosion damage [texte imprimé] / Risa Okita, Auteur ; Yongli Zhang, Auteur ; Brenton S. McLaury, Auteur . - 2012 . - 13 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 6 (Juin 2012) . - 13 p.
Mots-clés : erosion modeling; CFD; viscosity; prticle size Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Zhang et al. (2006) utilized computational fluid dynamics (CFD) to examine the validity of erosion models that have been implemented into CFD codes to predict solid-particle erosion in air and water for inconel 625. This work is an extension of Zhang's work and is presented as a step toward obtaining a better understanding of the effects of fluid viscosity and sand-particle size on measured and calculated erosion ratios, where erosion ratio is defined as the ratio of mass loss of material to mass of solid particles. The erosion ratios of aluminum 6061-T6 were measured for direct impingement conditions of a submerged jet. Fluid viscosities of 1, 10, 25, and 50 cP and sand-particle sizes of 20, 150, and 300 µm were tested. The average fluid speed of the jet was maintained at 10 m/s. Erosion data show that erosion ratios for the 20- and 150-µm particles are reduced as the viscosity is increased, whereas, surprisingly, the erosion ratios for the 300-µm particles do not seem to change much for the higher viscosities. For all viscosities considered, larger particles produced higher erosion ratios, for the same mass of sand, than smaller particles. Concurrently, an erosion equation has been generated based on erosion testing of the same material in air. The new erosion model has been compared to available models and has been implemented into a commercially available CFD code to predict erosion ratios for a variety of flow conditions, flow geometries, and particle sizes. Because particle speed and impact angle greatly influence erosion ratios of the material, calculated particle speeds were compared with measurements. Comparisons reveal that, as the particles penetrate the near wall shear layer, particles in the higher viscosity liquids tend to slow down more rapidly than particles in the lower viscosity liquids. In addition, CFD predictions and particle-speed measurements are used to explain why the erosion data for larger particles is less sensitive to the increased viscosities. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000006 [...]