Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Romeo Susan-Resiga
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine / Romeo Susan-Resiga in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 5 (Mai 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 5 (Mai 2010) . - 15 p.
Titre : Analysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine Type de document : texte imprimé Auteurs : Romeo Susan-Resiga, Auteur ; Sebastian Muntean, Auteur ; Hasmatuchi, Vlad, Auteur Année de publication : 2010 Article en page(s) : 15 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : pressure; flow (dynamics); turbulence; kinetic energy; stress; diffusers; turbines; vortices; electrical discharge; swirling flow; Francis turbines Résumé : We perform a numerical analysis of the decelerated swirling flow into the discharge cone of a model Francis turbine operated at variable discharge and constant head, using an axisymmetric turbulent swirling flow model and a corresponding simplified computational domain. Inlet boundary conditions correspond to velocity and turbulent kinetic energy profiles measured downstream the Francis runner. Our numerical results are validated against experimental data on a survey section further downstream in the cone, showing that the Reynolds stress turbulence model with a quadratic pressure-strain term correctly captures the flow field. It is shown that the diffuser performance quickly deteriorates as the turbine discharge decreases, due to the occurrence and development of vortex breakdown, with a central quasistagnant region. We investigate a novel flow control technique, which uses a water jet injected from the runner crown tip along the axis. It is shown that the jet discharge can be optimized for minimum overall losses, while the vortex breakdown is eliminated. This flow control method is useful for mitigating the Francis turbine flow instabilities when operating at partial discharge. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27418 [...] [article] Analysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine [texte imprimé] / Romeo Susan-Resiga, Auteur ; Sebastian Muntean, Auteur ; Hasmatuchi, Vlad, Auteur . - 2010 . - 15 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 5 (Mai 2010) . - 15 p.
Mots-clés : pressure; flow (dynamics); turbulence; kinetic energy; stress; diffusers; turbines; vortices; electrical discharge; swirling flow; Francis turbines Résumé : We perform a numerical analysis of the decelerated swirling flow into the discharge cone of a model Francis turbine operated at variable discharge and constant head, using an axisymmetric turbulent swirling flow model and a corresponding simplified computational domain. Inlet boundary conditions correspond to velocity and turbulent kinetic energy profiles measured downstream the Francis runner. Our numerical results are validated against experimental data on a survey section further downstream in the cone, showing that the Reynolds stress turbulence model with a quadratic pressure-strain term correctly captures the flow field. It is shown that the diffuser performance quickly deteriorates as the turbine discharge decreases, due to the occurrence and development of vortex breakdown, with a central quasistagnant region. We investigate a novel flow control technique, which uses a water jet injected from the runner crown tip along the axis. It is shown that the jet discharge can be optimized for minimum overall losses, while the vortex breakdown is eliminated. This flow control method is useful for mitigating the Francis turbine flow instabilities when operating at partial discharge. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27418 [...] Unsteady pressure analysis of a swirling flow with vortex rope and axial water injection in a discharge cone / Alin Ilie Bosioc in Transactions of the ASME . Journal of fluids engineering, Vol. 134 N° 8 (Août 2012)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 8 (Août 2012) . - 11 p.
Titre : Unsteady pressure analysis of a swirling flow with vortex rope and axial water injection in a discharge cone Type de document : texte imprimé Auteurs : Alin Ilie Bosioc, Auteur ; Romeo Susan-Resiga, Auteur ; Sebastian Muntean, Auteur Année de publication : 2012 Article en page(s) : 11 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : decelerated swirling flow; vortex rope; water injection method; unsteady pressure; experimental investigation Résumé : The variable demand of the energy market requires that hydraulic turbines operate at variable conditions, which includes regimes far from the best efficiency point. The vortex rope developed at partial discharges in the conical diffuser is responsible for large pressure pulsations, runner blades breakdowns and may lead to power swing phenomena. A novel method introduced by Resiga et al. (2006, “Jet Control of the Draft Tube in Francis Turbines at Partial Discharge,” Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Japan, Paper No. F192) injects an axial water jet from the runner crown downstream in the draft tube cone to mitigate the vortex rope and its consequences. A special test rig was developed at “Politehnica” University of Timisoara in order to investigate different flow control techniques. Consequently, a vortex rope similar to the one developed in a Francis turbine cone at 70% partial discharge is generated in the rig's test section. In order to investigate the new jet control method an auxiliary hydraulic circuit was designed in order to supply the jet. The experimental investigations presented in this paper are concerned with pressure measurements at the wall of the conical diffuser. The pressure fluctuations' Fourier spectra are analyzed in order to assess how the amplitude and dominating frequency are modified by the water injection. It is shown that the water jet injection significantly reduces both the amplitude and the frequency of pressure fluctuations, while improving the pressure recovery in the conical diffuser. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000008 [...] [article] Unsteady pressure analysis of a swirling flow with vortex rope and axial water injection in a discharge cone [texte imprimé] / Alin Ilie Bosioc, Auteur ; Romeo Susan-Resiga, Auteur ; Sebastian Muntean, Auteur . - 2012 . - 11 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 134 N° 8 (Août 2012) . - 11 p.
Mots-clés : decelerated swirling flow; vortex rope; water injection method; unsteady pressure; experimental investigation Résumé : The variable demand of the energy market requires that hydraulic turbines operate at variable conditions, which includes regimes far from the best efficiency point. The vortex rope developed at partial discharges in the conical diffuser is responsible for large pressure pulsations, runner blades breakdowns and may lead to power swing phenomena. A novel method introduced by Resiga et al. (2006, “Jet Control of the Draft Tube in Francis Turbines at Partial Discharge,” Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Japan, Paper No. F192) injects an axial water jet from the runner crown downstream in the draft tube cone to mitigate the vortex rope and its consequences. A special test rig was developed at “Politehnica” University of Timisoara in order to investigate different flow control techniques. Consequently, a vortex rope similar to the one developed in a Francis turbine cone at 70% partial discharge is generated in the rig's test section. In order to investigate the new jet control method an auxiliary hydraulic circuit was designed in order to supply the jet. The experimental investigations presented in this paper are concerned with pressure measurements at the wall of the conical diffuser. The pressure fluctuations' Fourier spectra are analyzed in order to assess how the amplitude and dominating frequency are modified by the water injection. It is shown that the water jet injection significantly reduces both the amplitude and the frequency of pressure fluctuations, while improving the pressure recovery in the conical diffuser. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000134000008 [...]