Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Todd Letcher
Documents disponibles écrits par cet auteur
Affiner la rechercheAn energy-based axial isothermal-mechanical fatigue lifing method / John Wertz in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 10 (Octobre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 10 (Octobre 2012) . - 07 p.
Titre : An energy-based axial isothermal-mechanical fatigue lifing method Type de document : texte imprimé Auteurs : John Wertz, Auteur ; Todd Letcher, Auteur ; M.-H. Herman Shen, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : energy-based fatigue lifing method; axial isothermal-mechanical fatigue (IMF); Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An energy-based fatigue lifing method for the determination of the full-life and critical-life of in-service structures subjected to axial isothermal-mechanical fatigue (IMF) has been developed. The foundation of this procedure is the energy-based axial room-temperature lifing model, which states: the total strain energy dissipated during both a quasi-static process and a dynamic (fatigue) process is the same material property. The axial IMF lifing framework is composed of the following entities: (1) the development of an axial IMF testing capability; (2) the creation of a testing procedure capable of assessing the strain energy dissipated during both a quasi-static process and a dynamic process at elevated temperatures; and (3) the incorporation of the effect of thermal loading into the axial fatigue lifing model. Both an axial IMF capability and a detailed testing procedure were created. The axial IMF capability was employed to produce full-life and critical-life predictions as functions of temperature, which were shown to have an excellent correlation with experimental fatigue data. For the highest operating temperature, the axial IMF full-life prediction was compared to lifing predictions made by both the universal slopes and the uniform material law prediction and was found to be more accurate at an elevated temperature. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000010 [...] [article] An energy-based axial isothermal-mechanical fatigue lifing method [texte imprimé] / John Wertz, Auteur ; Todd Letcher, Auteur ; M.-H. Herman Shen, Auteur . - 2012 . - 07 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 10 (Octobre 2012) . - 07 p.
Mots-clés : energy-based fatigue lifing method; axial isothermal-mechanical fatigue (IMF); Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : An energy-based fatigue lifing method for the determination of the full-life and critical-life of in-service structures subjected to axial isothermal-mechanical fatigue (IMF) has been developed. The foundation of this procedure is the energy-based axial room-temperature lifing model, which states: the total strain energy dissipated during both a quasi-static process and a dynamic (fatigue) process is the same material property. The axial IMF lifing framework is composed of the following entities: (1) the development of an axial IMF testing capability; (2) the creation of a testing procedure capable of assessing the strain energy dissipated during both a quasi-static process and a dynamic process at elevated temperatures; and (3) the incorporation of the effect of thermal loading into the axial fatigue lifing model. Both an axial IMF capability and a detailed testing procedure were created. The axial IMF capability was employed to produce full-life and critical-life predictions as functions of temperature, which were shown to have an excellent correlation with experimental fatigue data. For the highest operating temperature, the axial IMF full-life prediction was compared to lifing predictions made by both the universal slopes and the uniform material law prediction and was found to be more accurate at an elevated temperature. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000010 [...]