[article]
Titre : |
An energy-based axial isothermal-mechanical fatigue lifing method |
Type de document : |
texte imprimé |
Auteurs : |
John Wertz, Auteur ; Todd Letcher, Auteur ; M.-H. Herman Shen, Auteur |
Année de publication : |
2012 |
Article en page(s) : |
07 p. |
Note générale : |
gas turbines |
Langues : |
Anglais (eng) |
Mots-clés : |
energy-based fatigue lifing method axial isothermal-mechanical (IMF) |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
An energy-based fatigue lifing method for the determination of the full-life and critical-life of in-service structures subjected to axial isothermal-mechanical fatigue (IMF) has been developed. The foundation of this procedure is the energy-based axial room-temperature lifing model, which states: the total strain energy dissipated during both a quasi-static process and a dynamic (fatigue) process is the same material property. The axial IMF lifing framework is composed of the following entities: (1) the development of an axial IMF testing capability; (2) the creation of a testing procedure capable of assessing the strain energy dissipated during both a quasi-static process and a dynamic process at elevated temperatures; and (3) the incorporation of the effect of thermal loading into the axial fatigue lifing model. Both an axial IMF capability and a detailed testing procedure were created. The axial IMF capability was employed to produce full-life and critical-life predictions as functions of temperature, which were shown to have an excellent correlation with experimental fatigue data. For the highest operating temperature, the axial IMF full-life prediction was compared to lifing predictions made by both the universal slopes and the uniform material law prediction and was found to be more accurate at an elevated temperature. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000010 [...] |
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 10 (Octobre 2012) . - 07 p.
[article] An energy-based axial isothermal-mechanical fatigue lifing method [texte imprimé] / John Wertz, Auteur ; Todd Letcher, Auteur ; M.-H. Herman Shen, Auteur . - 2012 . - 07 p. gas turbines Langues : Anglais ( eng) in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 10 (Octobre 2012) . - 07 p.
Mots-clés : |
energy-based fatigue lifing method axial isothermal-mechanical (IMF) |
Index. décimale : |
620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux |
Résumé : |
An energy-based fatigue lifing method for the determination of the full-life and critical-life of in-service structures subjected to axial isothermal-mechanical fatigue (IMF) has been developed. The foundation of this procedure is the energy-based axial room-temperature lifing model, which states: the total strain energy dissipated during both a quasi-static process and a dynamic (fatigue) process is the same material property. The axial IMF lifing framework is composed of the following entities: (1) the development of an axial IMF testing capability; (2) the creation of a testing procedure capable of assessing the strain energy dissipated during both a quasi-static process and a dynamic process at elevated temperatures; and (3) the incorporation of the effect of thermal loading into the axial fatigue lifing model. Both an axial IMF capability and a detailed testing procedure were created. The axial IMF capability was employed to produce full-life and critical-life predictions as functions of temperature, which were shown to have an excellent correlation with experimental fatigue data. For the highest operating temperature, the axial IMF full-life prediction was compared to lifing predictions made by both the universal slopes and the uniform material law prediction and was found to be more accurate at an elevated temperature. |
DEWEY : |
620.1 |
ISSN : |
0742-4795 |
En ligne : |
http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000010 [...] |
|