Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Zhijun Lei
Documents disponibles écrits par cet auteur
Affiner la rechercheEffects of core flow swirl on the flow characteristics of a scalloped forced mixer / Zhijun Lei in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Titre : Effects of core flow swirl on the flow characteristics of a scalloped forced mixer Type de document : texte imprimé Auteurs : Zhijun Lei, Auteur ; Ali Mahallati, Auteur ; Mark Cunningham, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : core flow swirl; scaled turbofan mixer; performance Résumé : This paper presents a detailed experimental investigation of the influence of core flow swirl on the mixing and performance of a scaled turbofan mixer with 12 scalloped lobes. Measurements were made downstream of the mixer in a coaxial wind tunnel. The core-to-bypass velocity ratio was set to 2:1, temperature ratio to 1.0, and pressure ratio to 1.03, giving a Reynolds number of 5.2 × 105, based on the core flow velocity and equivalent diameter. In the core flow, the background turbulence intensity was raised to 5% and the swirl angle was varied from 0 deg to 30 deg with five vane geometries. At low swirl angles, additional streamwise vortices were generated by the deformation of normal vortices due to the scalloped lobes. With increased core swirl, greater than 10 deg, the additional streamwise vortices were generated mainly due to radial velocity deflection, rather than stretching and deformation of normal vortices. At high swirl angles, stronger streamwise vortices and rapid interaction between various vortices promoted downstream mixing. Mixing was enhanced with minimal pressure and thrust losses for the inlet swirl angles less than 10 deg. However, the reversed flow downstream of the center body was a dominant contributor to the loss of thrust at the maximum core flow swirl angle of 30 deg. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Effects of core flow swirl on the flow characteristics of a scalloped forced mixer [texte imprimé] / Zhijun Lei, Auteur ; Ali Mahallati, Auteur ; Mark Cunningham, Auteur . - 2012 . - 09 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 09 p.
Mots-clés : core flow swirl; scaled turbofan mixer; performance Résumé : This paper presents a detailed experimental investigation of the influence of core flow swirl on the mixing and performance of a scaled turbofan mixer with 12 scalloped lobes. Measurements were made downstream of the mixer in a coaxial wind tunnel. The core-to-bypass velocity ratio was set to 2:1, temperature ratio to 1.0, and pressure ratio to 1.03, giving a Reynolds number of 5.2 × 105, based on the core flow velocity and equivalent diameter. In the core flow, the background turbulence intensity was raised to 5% and the swirl angle was varied from 0 deg to 30 deg with five vane geometries. At low swirl angles, additional streamwise vortices were generated by the deformation of normal vortices due to the scalloped lobes. With increased core swirl, greater than 10 deg, the additional streamwise vortices were generated mainly due to radial velocity deflection, rather than stretching and deformation of normal vortices. At high swirl angles, stronger streamwise vortices and rapid interaction between various vortices promoted downstream mixing. Mixing was enhanced with minimal pressure and thrust losses for the inlet swirl angles less than 10 deg. However, the reversed flow downstream of the center body was a dominant contributor to the loss of thrust at the maximum core flow swirl angle of 30 deg. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...]