Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Walter G. Kutschke
Documents disponibles écrits par cet auteur
Affiner la rechercheInvestigation of lateral stress relief using finite elements and fracture mechanics / Walter G. Kutschke in Journal of geotechnical and geoenvironmental engineering, Vol. 138 N° 10 (Octobre 2012)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 10 (Octobre 2012) . - pp.1277–1283.
Titre : Investigation of lateral stress relief using finite elements and fracture mechanics : Case history study of the saxon pit Type de document : texte imprimé Auteurs : Walter G. Kutschke, Auteur ; Luis E. Vallejo, Auteur Année de publication : 2013 Article en page(s) : pp.1277–1283. Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Lateral stress relief Stiff clay Finite-element method Fracture mechanics Résumé : A published case history on the performance of a 29-m-deep excavation that occurred in stiff Oxford clay provides direct field evidence that lateral stress relief can produce shear planes. A finite-element model was developed to investigate the impact of lateral stress relief on this slope. The finite-element model utilized published site characterization data and incorporated shear-strength reductions along closed failure planes. Lateral stress relief resulted in an outward slope face movement that produced sufficient differential shear strain to develop and propagate a horizontal crack at the base of the slope. Analyses indicate excellent agreement with observed lateral and vertical slope face movements. The finite-element model suggests that the slope essentially behaved as a shear model. Recognizing the behavior of this slope, the principles of linear elastic fracture mechanics are expanded to consider closed crack propagation under shear loading conditions. Analyses indicate that a closed crack under shear loading will propagate along the preexisting crack plane, as observed in the Oxford Slope. ISSN : 1090-0241 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000688 [article] Investigation of lateral stress relief using finite elements and fracture mechanics : Case history study of the saxon pit [texte imprimé] / Walter G. Kutschke, Auteur ; Luis E. Vallejo, Auteur . - 2013 . - pp.1277–1283.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 10 (Octobre 2012) . - pp.1277–1283.
Mots-clés : Lateral stress relief Stiff clay Finite-element method Fracture mechanics Résumé : A published case history on the performance of a 29-m-deep excavation that occurred in stiff Oxford clay provides direct field evidence that lateral stress relief can produce shear planes. A finite-element model was developed to investigate the impact of lateral stress relief on this slope. The finite-element model utilized published site characterization data and incorporated shear-strength reductions along closed failure planes. Lateral stress relief resulted in an outward slope face movement that produced sufficient differential shear strain to develop and propagate a horizontal crack at the base of the slope. Analyses indicate excellent agreement with observed lateral and vertical slope face movements. The finite-element model suggests that the slope essentially behaved as a shear model. Recognizing the behavior of this slope, the principles of linear elastic fracture mechanics are expanded to consider closed crack propagation under shear loading conditions. Analyses indicate that a closed crack under shear loading will propagate along the preexisting crack plane, as observed in the Oxford Slope. ISSN : 1090-0241 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000688