Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Gennaro G. Marino
Documents disponibles écrits par cet auteur
Affiner la rechercheInfluence of softening on mine floor-bearing capacity / Gennaro G. Marino in Journal of geotechnical and geoenvironmental engineering, Vol. 138 N° 10 (Octobre 2012)
[article]
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 10 (Octobre 2012) . - pp.1284–1297.
Titre : Influence of softening on mine floor-bearing capacity : Case history Type de document : texte imprimé Auteurs : Gennaro G. Marino, Auteur ; Abdolreza Osouli, Auteur Année de publication : 2013 Article en page(s) : pp.1284–1297. Note générale : Géotechnique Langues : Anglais (eng) Mots-clés : Rock softening Mine floor properties Bearing strength Floor stability analysis Résumé : This paper introduces a new approach that considers the effect of softening to more accurately calculate floor-bearing capacities where difficult mine conditions are present. Because of softening and changes in confining pressures, the geotechnical properties of immediate fine-grained rock vary in the mine floor. Therefore, when floor softening is present, the conventional equations used to determine the floor-bearing capacity are not very accurate. In this study, a methodology is presented that considers the floor softening and existence of a durable layer in the mine floor. The proposed method is based on analysis of a case study located in central Illinois utilizing finite-element method (FEM) and rock mechanics laboratory data. For this case study, extensive geological mapping and laboratory tests, including rock classification, rock swell properties, and triaxial compression tests, were conducted on samples of fine-grained rocks that predominantly consisted of mudstone. The results of laboratory tests are presented and discussed in detail. Aerial and cross-sectional analyses of the floor lithology and stratigraphy were performed to evaluate the important bearing conditions across the project site. From the analyses, the immediate floor thickness and type of the nondurable and the underlying durable rock across the site were determined. DuroIndex is presented and used to determine and rate the durability of mine floor material. Considering certain pillar-to-room width ratios, two-dimensional FEM analyses were performed to evaluate mine floor capacity with both softened and unsoftened floor conditions. Consequently, the softening correction factor, or the correction for the softening effect, was determined. Finally, a procedure that takes into account the effect of softening and the existence of a durable layer was developed to determine allowable floor-bearing capacity. ISSN : 1090-0241 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000693 [article] Influence of softening on mine floor-bearing capacity : Case history [texte imprimé] / Gennaro G. Marino, Auteur ; Abdolreza Osouli, Auteur . - 2013 . - pp.1284–1297.
Géotechnique
Langues : Anglais (eng)
in Journal of geotechnical and geoenvironmental engineering > Vol. 138 N° 10 (Octobre 2012) . - pp.1284–1297.
Mots-clés : Rock softening Mine floor properties Bearing strength Floor stability analysis Résumé : This paper introduces a new approach that considers the effect of softening to more accurately calculate floor-bearing capacities where difficult mine conditions are present. Because of softening and changes in confining pressures, the geotechnical properties of immediate fine-grained rock vary in the mine floor. Therefore, when floor softening is present, the conventional equations used to determine the floor-bearing capacity are not very accurate. In this study, a methodology is presented that considers the floor softening and existence of a durable layer in the mine floor. The proposed method is based on analysis of a case study located in central Illinois utilizing finite-element method (FEM) and rock mechanics laboratory data. For this case study, extensive geological mapping and laboratory tests, including rock classification, rock swell properties, and triaxial compression tests, were conducted on samples of fine-grained rocks that predominantly consisted of mudstone. The results of laboratory tests are presented and discussed in detail. Aerial and cross-sectional analyses of the floor lithology and stratigraphy were performed to evaluate the important bearing conditions across the project site. From the analyses, the immediate floor thickness and type of the nondurable and the underlying durable rock across the site were determined. DuroIndex is presented and used to determine and rate the durability of mine floor material. Considering certain pillar-to-room width ratios, two-dimensional FEM analyses were performed to evaluate mine floor capacity with both softened and unsoftened floor conditions. Consequently, the softening correction factor, or the correction for the softening effect, was determined. Finally, a procedure that takes into account the effect of softening and the existence of a durable layer was developed to determine allowable floor-bearing capacity. ISSN : 1090-0241 En ligne : http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GT.1943-5606.0000693