Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Charlie Koupper
Documents disponibles écrits par cet auteur
Affiner la rechercheConsiderations on the numerical modeling and performance of axial swirlers under relight conditions / Nicholas Grech in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 134 N° 11 (Novembre 2012)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Titre : Considerations on the numerical modeling and performance of axial swirlers under relight conditions Type de document : texte imprimé Auteurs : Nicholas Grech, Auteur ; Charlie Koupper, Auteur ; Zachos, Pavlos K., Auteur Année de publication : 2012 Article en page(s) : 08 p. Note générale : gas turbines Langues : Anglais (eng) Mots-clés : axially swirled atomizer; windmilling engine environment; tangential velocity Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Numerical modeling of aero engine combustors under relight conditions is a matter of continuously increasing importance due to the demanding engine certification regulations. In order to reduce the complexity and the cost of the numerical modeling, common practice is to replace the atomizer's swirlers with velocity profiles boundary conditions, very often scaled down from nominal operating conditions assuming similarity of the swirler flowfield. The current numerical study focuses on the flowfield characteristics of an axially swirled atomizer operating within a windmilling engine environment. The scalability of the velocity profile from higher power settings is examined. Observations on the performance of the axial swirler under relight conditions are also made. Experimental data was used as a validation platform for the numerical solver, after a grid sensitivity study and a turbulence model selection process. Boundary conditions for simulating the windmilling environment were extracted from experimental work. The swirler axial and tangential velocity profiles were normalized using the swirler inlet velocity. Results showed that both profiles are only scalable for windmilling conditions of high flight Mach number (>= 0.5). At low flight Mach numbers, the actual profile had a lower velocity than that predicted through scaling. The swirl number was found to deteriorate significantly with the flight velocity following a linear trend, reducing significantly the expected flame quality. As a consequence the burner is forced to operate at the edge of its stability loop with low certainty regarding its successful relight. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...] [article] Considerations on the numerical modeling and performance of axial swirlers under relight conditions [texte imprimé] / Nicholas Grech, Auteur ; Charlie Koupper, Auteur ; Zachos, Pavlos K., Auteur . - 2012 . - 08 p.
gas turbines
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 134 N° 11 (Novembre 2012) . - 08 p.
Mots-clés : axially swirled atomizer; windmilling engine environment; tangential velocity Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Numerical modeling of aero engine combustors under relight conditions is a matter of continuously increasing importance due to the demanding engine certification regulations. In order to reduce the complexity and the cost of the numerical modeling, common practice is to replace the atomizer's swirlers with velocity profiles boundary conditions, very often scaled down from nominal operating conditions assuming similarity of the swirler flowfield. The current numerical study focuses on the flowfield characteristics of an axially swirled atomizer operating within a windmilling engine environment. The scalability of the velocity profile from higher power settings is examined. Observations on the performance of the axial swirler under relight conditions are also made. Experimental data was used as a validation platform for the numerical solver, after a grid sensitivity study and a turbulence model selection process. Boundary conditions for simulating the windmilling environment were extracted from experimental work. The swirler axial and tangential velocity profiles were normalized using the swirler inlet velocity. Results showed that both profiles are only scalable for windmilling conditions of high flight Mach number (>= 0.5). At low flight Mach numbers, the actual profile had a lower velocity than that predicted through scaling. The swirl number was found to deteriorate significantly with the flight velocity following a linear trend, reducing significantly the expected flame quality. As a consequence the burner is forced to operate at the edge of its stability loop with low certainty regarding its successful relight. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000134000011 [...]