Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Anoop Verma
Documents disponibles écrits par cet auteur
Affiner la rechercheFault monitoring of wind turbine generator brushes / Anoop Verma in Transactions of the ASME. Journal of solar energy engineering, Vol. 134 N° 2 (Mai 2012)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 2 (Mai 2012) . - 09 p.
Titre : Fault monitoring of wind turbine generator brushes : a data-mining approach Type de document : texte imprimé Auteurs : Anoop Verma, Auteur ; Andrew Kusiak, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : solar energy Langues : Anglais (eng) Mots-clés : wind turbine; data-mining; prediction; Tomek links; generator brush wear; boosting tree; random forest Index. décimale : 621.47 Résumé : Components of wind turbines are subjected to asymmetric loads caused by variable wind conditions. Carbon brushes are critical components of the wind turbine generator. Adequately maintaining and detecting abnormalities in the carbon brushes early is essential for proper turbine performance. In this paper, data-mining algorithms are applied for early prediction of carbon brush faults. Predicting generator brush faults early enables timely maintenance or replacement of brushes. The results discussed in this paper are based on analyzing generator brush faults that occurred on 27 wind turbines. The datasets used to analyze faults were collected from the supervisory control and data acquisition (SCADA) systems installed at the wind turbines. Twenty-four data-mining models are constructed to predict faults up to 12 h before the actual fault occurs. To increase the prediction accuracy of the models discussed, a data balancing approach is used. Four data-mining algorithms were studied to evaluate the quality of the models for predicting generator brush faults. Among the selected data-mining algorithms, the boosting tree algorithm provided the best prediction results. Research limitations attributed to the available datasets are discussed. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000002 [...] [article] Fault monitoring of wind turbine generator brushes : a data-mining approach [texte imprimé] / Anoop Verma, Auteur ; Andrew Kusiak, Auteur . - 2012 . - 09 p.
solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 2 (Mai 2012) . - 09 p.
Mots-clés : wind turbine; data-mining; prediction; Tomek links; generator brush wear; boosting tree; random forest Index. décimale : 621.47 Résumé : Components of wind turbines are subjected to asymmetric loads caused by variable wind conditions. Carbon brushes are critical components of the wind turbine generator. Adequately maintaining and detecting abnormalities in the carbon brushes early is essential for proper turbine performance. In this paper, data-mining algorithms are applied for early prediction of carbon brush faults. Predicting generator brush faults early enables timely maintenance or replacement of brushes. The results discussed in this paper are based on analyzing generator brush faults that occurred on 27 wind turbines. The datasets used to analyze faults were collected from the supervisory control and data acquisition (SCADA) systems installed at the wind turbines. Twenty-four data-mining models are constructed to predict faults up to 12 h before the actual fault occurs. To increase the prediction accuracy of the models discussed, a data balancing approach is used. Four data-mining algorithms were studied to evaluate the quality of the models for predicting generator brush faults. Among the selected data-mining algorithms, the boosting tree algorithm provided the best prediction results. Research limitations attributed to the available datasets are discussed. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000002 [...]