Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Yuehong Su
Documents disponibles écrits par cet auteur
Affiner la rechercheA novel lens-walled compound parabolic concentrator for photovoltaic applications / Yuehong Su in Transactions of the ASME. Journal of solar energy engineering, Vol. 134 N° 2 (Mai 2012)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 2 (Mai 2012) . - 07 p.
Titre : A novel lens-walled compound parabolic concentrator for photovoltaic applications Type de document : texte imprimé Auteurs : Yuehong Su, Auteur ; Gang Pei, Auteur ; Saffa B. Riffat, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : solar energy Langues : Anglais (eng) Mots-clés : lens-walled; CPC; half acceptance angle; concentration ratio; optical efficiency Index. décimale : 621.47 Résumé : A compound parabolic concentrator (CPC) is a nonimaging concentrator that can concentrate solar radiation coming within its acceptance angle. A low concentration CPC photovoltaic system has the advantages of reduced Photovoltaics (PVs) cell size, increased efficiency and stationary operation. The acceptance angle of a CPC is associated with its geometrical concentration ratio, by which the size of PV cell could be reduced. Truncation is a way to increase the actual acceptance angle of a mirror CPC, but it also reduces the geometrical concentration ratio. On the other hand, a solid dielectric CPC can have a much larger acceptance angle, but it has a larger weight. To overcome these drawbacks, this study presents a novel lens-walled CPC that has a thin lens attached to the inside of a common mirror CPC or has the lens to be mirror coated on its outside surface. The shape of the lens is formed by rotating the parabolic curves of a CPC by a small degree internally around the top end points of the curves. The refraction of the lens allows the lens-walled CPC to concentrate light from wider incidence angle. The commercial optical analysis software PHOTOPIA is used to verify the principle of the presented lens-walled CPC and examine its optical performance against the common CPCs. As an example, the simulation is aimed to evaluate whether a lens-walled CPC with a geometrical concentration ratio of 4 has any advantage over a common CPC with a geometrical concentration ratio of 2.5 in terms of actual acceptance angle, optical efficiency and optical concentration ratio. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000002 [...] [article] A novel lens-walled compound parabolic concentrator for photovoltaic applications [texte imprimé] / Yuehong Su, Auteur ; Gang Pei, Auteur ; Saffa B. Riffat, Auteur . - 2012 . - 07 p.
solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 2 (Mai 2012) . - 07 p.
Mots-clés : lens-walled; CPC; half acceptance angle; concentration ratio; optical efficiency Index. décimale : 621.47 Résumé : A compound parabolic concentrator (CPC) is a nonimaging concentrator that can concentrate solar radiation coming within its acceptance angle. A low concentration CPC photovoltaic system has the advantages of reduced Photovoltaics (PVs) cell size, increased efficiency and stationary operation. The acceptance angle of a CPC is associated with its geometrical concentration ratio, by which the size of PV cell could be reduced. Truncation is a way to increase the actual acceptance angle of a mirror CPC, but it also reduces the geometrical concentration ratio. On the other hand, a solid dielectric CPC can have a much larger acceptance angle, but it has a larger weight. To overcome these drawbacks, this study presents a novel lens-walled CPC that has a thin lens attached to the inside of a common mirror CPC or has the lens to be mirror coated on its outside surface. The shape of the lens is formed by rotating the parabolic curves of a CPC by a small degree internally around the top end points of the curves. The refraction of the lens allows the lens-walled CPC to concentrate light from wider incidence angle. The commercial optical analysis software PHOTOPIA is used to verify the principle of the presented lens-walled CPC and examine its optical performance against the common CPCs. As an example, the simulation is aimed to evaluate whether a lens-walled CPC with a geometrical concentration ratio of 4 has any advantage over a common CPC with a geometrical concentration ratio of 2.5 in terms of actual acceptance angle, optical efficiency and optical concentration ratio. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000002 [...]