Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Vishy Karri
Documents disponibles écrits par cet auteur
Affiner la rechercheComparative study in predicting the global solar radiation for Darwin, Australia / Wai Kean Yap in Transactions of the ASME. Journal of solar energy engineering, Vol. 134 N° 3 (Août 2012)
[article]
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 3 (Août 2012) . - 06 p.
Titre : Comparative study in predicting the global solar radiation for Darwin, Australia Type de document : texte imprimé Auteurs : Wai Kean Yap, Auteur ; Vishy Karri, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : solar energy Langues : Anglais (eng) Mots-clés : solar radiation prediction; linear regression analysis; angstrom-prescott-page; artificial neural network Index. décimale : 621.47 Résumé : This paper presents a comparative study in predicting the monthly average solar radiation for Darwin, Australia (latitude 12.46 deg S longitude 130.84 deg E). The city of Darwin, Northern Territory (NT), has the highest and most consistent sunshine duration among all the other Australian states. This unique climate presents an opportunity for photovoltaic (PV) applications. Reliable and accurate predictions of solar radiation enable potential site locations, which exhibit high solar radiations and sunshine hours, to be identified for PV installation. Three predictive models were investigated in this study—the linear regression (LR), Angstrom–Prescott–Page (APP), and the artificial neural network (ANN) models. The mean global solar radiation coupled with the climate data (mean minimum and maximum temperatures, mean rainfall, mean evaporation, and sunshine fraction) obtained from the Australian Bureau of Meteorology (BoM) formed the basis of the dataset. Using simple and easily obtainable climate data presents an added advantage by reducing model complexity. Predictive results showed the root mean square errors (RMSEs) obtained were 6.72%, 13.29%, and 8.11% for the LR, APP, and ANN models, respectively. The predicted solar exposure from the LR model was then compared with the satellite-derived data to assess the accuracy of the LR method. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000003 [...] [article] Comparative study in predicting the global solar radiation for Darwin, Australia [texte imprimé] / Wai Kean Yap, Auteur ; Vishy Karri, Auteur . - 2012 . - 06 p.
solar energy
Langues : Anglais (eng)
in Transactions of the ASME. Journal of solar energy engineering > Vol. 134 N° 3 (Août 2012) . - 06 p.
Mots-clés : solar radiation prediction; linear regression analysis; angstrom-prescott-page; artificial neural network Index. décimale : 621.47 Résumé : This paper presents a comparative study in predicting the monthly average solar radiation for Darwin, Australia (latitude 12.46 deg S longitude 130.84 deg E). The city of Darwin, Northern Territory (NT), has the highest and most consistent sunshine duration among all the other Australian states. This unique climate presents an opportunity for photovoltaic (PV) applications. Reliable and accurate predictions of solar radiation enable potential site locations, which exhibit high solar radiations and sunshine hours, to be identified for PV installation. Three predictive models were investigated in this study—the linear regression (LR), Angstrom–Prescott–Page (APP), and the artificial neural network (ANN) models. The mean global solar radiation coupled with the climate data (mean minimum and maximum temperatures, mean rainfall, mean evaporation, and sunshine fraction) obtained from the Australian Bureau of Meteorology (BoM) formed the basis of the dataset. Using simple and easily obtainable climate data presents an added advantage by reducing model complexity. Predictive results showed the root mean square errors (RMSEs) obtained were 6.72%, 13.29%, and 8.11% for the LR, APP, and ANN models, respectively. The predicted solar exposure from the LR model was then compared with the satellite-derived data to assess the accuracy of the LR method. DEWEY : 621.47 ISSN : 0199-6231 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JSEEDO000134000003 [...]