Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ravi Santosh Arvapally
Documents disponibles écrits par cet auteur
Affiner la rechercheAnalyzing credibility of arguments in a web-based intelligent argumentation system for collective decision support based on K-means clustering algorithm / Ravi Santosh Arvapally in Knowledge management research and practice, Vol. 10 N° 4 (Décembre 2012)
[article]
in Knowledge management research and practice > Vol. 10 N° 4 (Décembre 2012) . - pp. 326-341
Titre : Analyzing credibility of arguments in a web-based intelligent argumentation system for collective decision support based on K-means clustering algorithm Type de document : texte imprimé Auteurs : Ravi Santosh Arvapally, Auteur ; Xiaoqing (Frank) Liu, Auteur Année de publication : 2013 Article en page(s) : pp. 326-341 Note générale : Management Langues : Anglais (eng) Mots-clés : Collaborative systems Decision support Group decision support Argumentation systems Collective intelligence Machine learning algorithms Résumé : We developed an intelligent argumentation and collaborative decision support system which allows stakeholders to exchange arguments and captures their rationale. Arguments with lack of credibility in an argumentation tree may negatively affect decisions in a collaborative decision making process if they are not identified collectively by the group. To address this issue, we perform clustering analysis on an argumentation tree using K-means clustering algorithm on credibility factors of arguments such as degree of an argument, and collective determination of an argument. Arguments are classified into multiple groups: from highly credible to lack of credibility. It helps capture rationale of selection of the most favorable solution alternative by the system. It helps decision makers identify arguments with high credibility based on collective determination. We perform an empirical study of the method and its results indicate that it is effective in supporting collective decision making using the system. ISSN : 1477-8238 En ligne : http://www.palgrave-journals.com/kmrp/journal/v10/n4/abs/kmrp201226a.html [article] Analyzing credibility of arguments in a web-based intelligent argumentation system for collective decision support based on K-means clustering algorithm [texte imprimé] / Ravi Santosh Arvapally, Auteur ; Xiaoqing (Frank) Liu, Auteur . - 2013 . - pp. 326-341.
Management
Langues : Anglais (eng)
in Knowledge management research and practice > Vol. 10 N° 4 (Décembre 2012) . - pp. 326-341
Mots-clés : Collaborative systems Decision support Group decision support Argumentation systems Collective intelligence Machine learning algorithms Résumé : We developed an intelligent argumentation and collaborative decision support system which allows stakeholders to exchange arguments and captures their rationale. Arguments with lack of credibility in an argumentation tree may negatively affect decisions in a collaborative decision making process if they are not identified collectively by the group. To address this issue, we perform clustering analysis on an argumentation tree using K-means clustering algorithm on credibility factors of arguments such as degree of an argument, and collective determination of an argument. Arguments are classified into multiple groups: from highly credible to lack of credibility. It helps capture rationale of selection of the most favorable solution alternative by the system. It helps decision makers identify arguments with high credibility based on collective determination. We perform an empirical study of the method and its results indicate that it is effective in supporting collective decision making using the system. ISSN : 1477-8238 En ligne : http://www.palgrave-journals.com/kmrp/journal/v10/n4/abs/kmrp201226a.html