Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Monika Ivantysynova
Documents disponibles écrits par cet auteur
Affiner la rechercheHeat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines / Matteo Pelosi in Transactions of the ASME . Journal of tribology, Vol. 134 N° 04 (Octobre 2012)
[article]
in Transactions of the ASME . Journal of tribology > Vol. 134 N° 04 (Octobre 2012) . - 15 p.
Titre : Heat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines Type de document : texte imprimé Auteurs : Matteo Pelosi, Auteur ; Monika Ivantysynova, Auteur Année de publication : 2012 Article en page(s) : 15 p. Note générale : tribology Langues : Anglais (eng) Mots-clés : thermo-elastohydrodynamic lubrication; axial piston machine; piston/cylinder interface; fluid-structure interaction; thermal elastic deformation Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The piston/cylinder interface of swash plate–type axial piston machines represents one of the most critical design elements for this type of pump and motor. Oscillating pressures and inertia forces acting on the piston lead to its micro-motion, which generates an oscillating fluid film with a dynamically changing pressure distribution. Operating under oscillating high load conditions, the fluid film between the piston and cylinder has simultaneously to bear the external load and to seal the high pressure regions of the machine. The fluid film interface physical behavior is characterized by an elasto-hydrodynamic lubrication regime. Additionally, the piston reciprocating motion causes fluid film viscous shear, which contributes to a significant heat generation. Therefore, to fully comprehend the piston/cylinder interface fluid film behavior, the influences of heat transfer to the solid boundaries and the consequent solid boundaries' thermal elastic deformation cannot be neglected. In fact, the mechanical bodies' complex temperature distribution represents the boundary for nonisothermal fluid film flow calculations. Furthermore, the solids-induced thermal elastic deformation directly affects the fluid film thickness. To analyze the piston/cylinder interface behavior, considering the fluid-structure interaction and thermal problems, the authors developed a fully coupled simulation model. The algorithm couples different numerical domains and techniques to consider all the described physical phenomena. In this paper, the authors present in detail the computational approach implemented to study the heat transfer and thermal elastic deformation phenomena. Simulation results for the piston/cylinder interface of an existing hydrostatic unit are discussed, considering different operating conditions and focusing on the influence of the thermal aspect. Model validation is provided, comparing fluid film boundary temperature distribution predictions with measurements taken on a special test bench. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE9000134000004 [...] [article] Heat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines [texte imprimé] / Matteo Pelosi, Auteur ; Monika Ivantysynova, Auteur . - 2012 . - 15 p.
tribology
Langues : Anglais (eng)
in Transactions of the ASME . Journal of tribology > Vol. 134 N° 04 (Octobre 2012) . - 15 p.
Mots-clés : thermo-elastohydrodynamic lubrication; axial piston machine; piston/cylinder interface; fluid-structure interaction; thermal elastic deformation Index. décimale : 621.5 Energie pneumatique. Machinerie et outils. Réfrigération Résumé : The piston/cylinder interface of swash plate–type axial piston machines represents one of the most critical design elements for this type of pump and motor. Oscillating pressures and inertia forces acting on the piston lead to its micro-motion, which generates an oscillating fluid film with a dynamically changing pressure distribution. Operating under oscillating high load conditions, the fluid film between the piston and cylinder has simultaneously to bear the external load and to seal the high pressure regions of the machine. The fluid film interface physical behavior is characterized by an elasto-hydrodynamic lubrication regime. Additionally, the piston reciprocating motion causes fluid film viscous shear, which contributes to a significant heat generation. Therefore, to fully comprehend the piston/cylinder interface fluid film behavior, the influences of heat transfer to the solid boundaries and the consequent solid boundaries' thermal elastic deformation cannot be neglected. In fact, the mechanical bodies' complex temperature distribution represents the boundary for nonisothermal fluid film flow calculations. Furthermore, the solids-induced thermal elastic deformation directly affects the fluid film thickness. To analyze the piston/cylinder interface behavior, considering the fluid-structure interaction and thermal problems, the authors developed a fully coupled simulation model. The algorithm couples different numerical domains and techniques to consider all the described physical phenomena. In this paper, the authors present in detail the computational approach implemented to study the heat transfer and thermal elastic deformation phenomena. Simulation results for the piston/cylinder interface of an existing hydrostatic unit are discussed, considering different operating conditions and focusing on the influence of the thermal aspect. Model validation is provided, comparing fluid film boundary temperature distribution predictions with measurements taken on a special test bench. DEWEY : 621.5 ISSN : 0742-4787 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE9000134000004 [...]