Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur D. Y. Tzou
Documents disponibles écrits par cet auteur
Affiner la rechercheLagging behavior in biological systems / D. Y. Tzou in Journal of heat transfer, Vol. 134 N° 5 (Mai 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 10 p.
Titre : Lagging behavior in biological systems Type de document : texte imprimé Auteurs : D. Y. Tzou, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : thermal lagging; bioheat transfer; antitumor drug delivery; blood mach number Index. décimale : 536 Chaleur. Thermodynamique Résumé : The lagging behavior is first exemplified by a rapidly stretched spring and a one-dimensional fin to illustrate the phase-lag concept via the thermal and mechanical properties that most engineers are familiar with. The second-order lagging model is then introduced to correlate with drug delivery in tumors and bioheat transfer that involve multiple carriers in heat/mass transport. Analytical expressions for the phase lags are derived, aiming toward revealing different physical origins for delays in different systems. For drug delivery in tumors involving nonequilibrium mass transport, the lagging behavior results from the finite time required for the rupture of liposome in releasing the antitumor drug and the finite time required for tumor cells to absorb drugs. For bioheat transfer involving nonequilibrium heat transport, on the other hand, the lagging behavior results from the finite time required for exchanging heat between tissue and blood. Pharmacodynamical and biological properties affecting the phase lags, as well as the dominating parameters over the lagging response are identified through the nondimensional analysis. Involvement of the thermal Mach number, which measures the speed of blood flow relative to the conventional thermal wave speed, is a new feature in this extension of the lagging model. The second-order effects in lagging are well correlated with the number of carriers involved in nonequilibrium heat and mass transport. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...] [article] Lagging behavior in biological systems [texte imprimé] / D. Y. Tzou, Auteur . - 2012 . - 10 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 10 p.
Mots-clés : thermal lagging; bioheat transfer; antitumor drug delivery; blood mach number Index. décimale : 536 Chaleur. Thermodynamique Résumé : The lagging behavior is first exemplified by a rapidly stretched spring and a one-dimensional fin to illustrate the phase-lag concept via the thermal and mechanical properties that most engineers are familiar with. The second-order lagging model is then introduced to correlate with drug delivery in tumors and bioheat transfer that involve multiple carriers in heat/mass transport. Analytical expressions for the phase lags are derived, aiming toward revealing different physical origins for delays in different systems. For drug delivery in tumors involving nonequilibrium mass transport, the lagging behavior results from the finite time required for the rupture of liposome in releasing the antitumor drug and the finite time required for tumor cells to absorb drugs. For bioheat transfer involving nonequilibrium heat transport, on the other hand, the lagging behavior results from the finite time required for exchanging heat between tissue and blood. Pharmacodynamical and biological properties affecting the phase lags, as well as the dominating parameters over the lagging response are identified through the nondimensional analysis. Involvement of the thermal Mach number, which measures the speed of blood flow relative to the conventional thermal wave speed, is a new feature in this extension of the lagging model. The second-order effects in lagging are well correlated with the number of carriers involved in nonequilibrium heat and mass transport. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...]