Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Chun Yang
Documents disponibles écrits par cet auteur
Affiner la rechercheFabrication and experimental characterization of nanochannels / Vinh-Nguyen Phan in Journal of heat transfer, Vol. 134 N° 5 (Mai 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 06 p.
Titre : Fabrication and experimental characterization of nanochannels Type de document : texte imprimé Auteurs : Vinh-Nguyen Phan, Auteur ; Nam-Trung Nguyen, Auteur ; Chun Yang, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : nanofluidics; nanochannels; micromachining; RIE; DRIE; capillary filling Index. décimale : 536 Chaleur. Thermodynamique Résumé : Nanofluidics is the science and technology involving a fluid flowing in or around structures with a least one dimension in the nanoscale, which is defined as the range from 1 nm to 100 nm. In this paper, we present the fabrication and characterization of nanochannels in silicon and glass. Since the lateral dimension of the channels is limited by the wavelength of UV light used in photolithography, the channel width can only be fabricated in the micrometer scale. However, the depth of the channel can be controlled precisely by the etching rate of reactive ion etching (RIE). Microchannels and access holes were etched with deep reactive ion etching (DRIE). Both nanochannels and microchannels were sealed by a Pyrex glass wafer using anodic bonding. The fabricated nanochannels were characterized by capillary filling and evaporation experiments. Due to the small channel height and weak fluorescent signal, fluorescent techniques are not suitable for the characterization of the nanochannels. A long exposure time is needed because of the limited amount of fluorescent molecules inhibit the measurement of transient and dynamic processes. However, as the channel height is shorter than all visible wavelengths, the contrast in refractive indices of air and liquid allows clear visualization of nanochannels filled with liquids. Automatic image processing with matlab allows the evaluation of capillary filling in nanochannels. Interesting phenomena and discrepancies with conventional theories were observed. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...] [article] Fabrication and experimental characterization of nanochannels [texte imprimé] / Vinh-Nguyen Phan, Auteur ; Nam-Trung Nguyen, Auteur ; Chun Yang, Auteur . - 2012 . - 06 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 06 p.
Mots-clés : nanofluidics; nanochannels; micromachining; RIE; DRIE; capillary filling Index. décimale : 536 Chaleur. Thermodynamique Résumé : Nanofluidics is the science and technology involving a fluid flowing in or around structures with a least one dimension in the nanoscale, which is defined as the range from 1 nm to 100 nm. In this paper, we present the fabrication and characterization of nanochannels in silicon and glass. Since the lateral dimension of the channels is limited by the wavelength of UV light used in photolithography, the channel width can only be fabricated in the micrometer scale. However, the depth of the channel can be controlled precisely by the etching rate of reactive ion etching (RIE). Microchannels and access holes were etched with deep reactive ion etching (DRIE). Both nanochannels and microchannels were sealed by a Pyrex glass wafer using anodic bonding. The fabricated nanochannels were characterized by capillary filling and evaporation experiments. Due to the small channel height and weak fluorescent signal, fluorescent techniques are not suitable for the characterization of the nanochannels. A long exposure time is needed because of the limited amount of fluorescent molecules inhibit the measurement of transient and dynamic processes. However, as the channel height is shorter than all visible wavelengths, the contrast in refractive indices of air and liquid allows clear visualization of nanochannels filled with liquids. Automatic image processing with matlab allows the evaluation of capillary filling in nanochannels. Interesting phenomena and discrepancies with conventional theories were observed. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...] Microfluidic bubble generation by acoustic field for mixing enhancement / Shasha Wang in Journal of heat transfer, Vol. 134 N° 5 (Mai 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 04 p.
Titre : Microfluidic bubble generation by acoustic field for mixing enhancement Type de document : texte imprimé Auteurs : Shasha Wang, Auteur ; Xiaoyang Huang, Auteur ; Chun Yang, Auteur Année de publication : 2012 Article en page(s) : 04 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : acoustic actuation; bubble generation; mixing; microchannel; high speed photography Index. décimale : 536 Chaleur. Thermodynamique Résumé : We demonstrate the bubble generation in a microfluidic channel by both experimental observation and numerical simulations. The microfluidic channel contains a nozzle-shaped actuation chamber with an acoustic resonator profile. The actuation is generated by a piezoelectric disk below the chamber. It was observed that for a steady deionized (DI) water flow driven through the channel, bubbles occurred in the channel when the piezoelectric disk was actuated at frequencies between 1 kHz and 5 kHz. Outside this actuation frequency range, no bubble generation was observed in the channel. The experiment showed that the presence of bubbles in this frequency range could significantly enhance the fluid mixing in the microfluidic channel, which otherwise would not happen at all without the bubbles. To further understand the bubble generation, the flow field in the microchannel was numerically simulated by a two-dimensional model. The numerical results show that there is a low pressure region inside the actuation chamber where water pressure is below the corresponding vapor pressure and thus bubbles can be generated. The bubble generation was also experimentally observed in the microchannel by using a high speed camera. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...] [article] Microfluidic bubble generation by acoustic field for mixing enhancement [texte imprimé] / Shasha Wang, Auteur ; Xiaoyang Huang, Auteur ; Chun Yang, Auteur . - 2012 . - 04 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 04 p.
Mots-clés : acoustic actuation; bubble generation; mixing; microchannel; high speed photography Index. décimale : 536 Chaleur. Thermodynamique Résumé : We demonstrate the bubble generation in a microfluidic channel by both experimental observation and numerical simulations. The microfluidic channel contains a nozzle-shaped actuation chamber with an acoustic resonator profile. The actuation is generated by a piezoelectric disk below the chamber. It was observed that for a steady deionized (DI) water flow driven through the channel, bubbles occurred in the channel when the piezoelectric disk was actuated at frequencies between 1 kHz and 5 kHz. Outside this actuation frequency range, no bubble generation was observed in the channel. The experiment showed that the presence of bubbles in this frequency range could significantly enhance the fluid mixing in the microfluidic channel, which otherwise would not happen at all without the bubbles. To further understand the bubble generation, the flow field in the microchannel was numerically simulated by a two-dimensional model. The numerical results show that there is a low pressure region inside the actuation chamber where water pressure is below the corresponding vapor pressure and thus bubbles can be generated. The bubble generation was also experimentally observed in the microchannel by using a high speed camera. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...]