Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Shaver, Gregory. M.
Documents disponibles écrits par cet auteur
Affiner la rechercheComputationally efficient whole-engine model of a cummins 2007 turbocharged diesel engine / Kulkarni, Anup M. in Transactions of the ASME . Journal of engineering for gas turbines and power, Vol. 132 N° 2 (Fevrier 2010)
[article]
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 09 p.
Titre : Computationally efficient whole-engine model of a cummins 2007 turbocharged diesel engine Type de document : texte imprimé Auteurs : Kulkarni, Anup M., Auteur ; Shaver, Gregory. M., Auteur ; Sriram S. Popuri, Auteur Année de publication : 2010 Article en page(s) : 09 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Air pollution Closed loop systems Combustion Compressors Diesel engines Exhaust systems Fuel systems Open loop systems Shapes (structures) Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper describes an accurate, flexible, and computationally efficient whole engine model incorporating a multizone, quasidimension combustion submodel for a 6.7-l six-cylinder turbocharged diesel engine with cooled exhaust gas recirculation (EGR), cooled air, and multiple fuel injections. The engine performance and NOx emissions predicative capability of the model is demonstrated at 22 engine operating conditions. The only model inputs are physical engine control module “control actions,” including injection rates, injection timings, EGR valve position, and variable geometry turbocharger rack position. The model is run using both “open” and “closed” loop control strategies for air/EGR path control, in both cases achieving very good correlation with experimental data. Model outputs include in-cylinder pressure and heat release, torque, combustion timing, brake specific fuel consumption, EGR flow rate, air flow rate, exhaust and intake pressure, and NOx emissions. The model predicts engine performance and emissions with average absolute errors within 5% and 18%, respectively, of true values with “open-loop” air/EGR control, and within 5% and 11% with “closed-loop” air/EGR control. In addition, accurate prediction of the coupling of the in-cylinder combustion and emission-production processes with the boosted, cooled air/EGR gas dynamics is a key characteristic of the model. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] [article] Computationally efficient whole-engine model of a cummins 2007 turbocharged diesel engine [texte imprimé] / Kulkarni, Anup M., Auteur ; Shaver, Gregory. M., Auteur ; Sriram S. Popuri, Auteur . - 2010 . - 09 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of engineering for gas turbines and power > Vol. 132 N° 2 (Fevrier 2010) . - 09 p.
Mots-clés : Air pollution Closed loop systems Combustion Compressors Diesel engines Exhaust systems Fuel systems Open loop systems Shapes (structures) Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : This paper describes an accurate, flexible, and computationally efficient whole engine model incorporating a multizone, quasidimension combustion submodel for a 6.7-l six-cylinder turbocharged diesel engine with cooled exhaust gas recirculation (EGR), cooled air, and multiple fuel injections. The engine performance and NOx emissions predicative capability of the model is demonstrated at 22 engine operating conditions. The only model inputs are physical engine control module “control actions,” including injection rates, injection timings, EGR valve position, and variable geometry turbocharger rack position. The model is run using both “open” and “closed” loop control strategies for air/EGR path control, in both cases achieving very good correlation with experimental data. Model outputs include in-cylinder pressure and heat release, torque, combustion timing, brake specific fuel consumption, EGR flow rate, air flow rate, exhaust and intake pressure, and NOx emissions. The model predicts engine performance and emissions with average absolute errors within 5% and 18%, respectively, of true values with “open-loop” air/EGR control, and within 5% and 11% with “closed-loop” air/EGR control. In addition, accurate prediction of the coupling of the in-cylinder combustion and emission-production processes with the boosted, cooled air/EGR gas dynamics is a key characteristic of the model. DEWEY : 620.1 ISSN : 0742-4795 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JETPEZ000132000002 [...] Dynamic Modeling of Residual-Affected Homogeneous Charge Compression Ignition Engines with Variable Valve Actuation / Shaver, Gregory. M. in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 127, N° 3 (Septembre 2005)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 127, N° 3 (Septembre 2005) . - 374-381 p.
Titre : Dynamic Modeling of Residual-Affected Homogeneous Charge Compression Ignition Engines with Variable Valve Actuation Titre original : Modèle Dynamique des Moteurs Homogènes Affectés d'Allumage Spontané de Charge de Résiduel avec la Mise en Action Variable de Valve Type de document : texte imprimé Auteurs : Shaver, Gregory. M., Auteur ; Edwards, Christopher F. ; Caton, Patrick A. ; Roelle, Matthew, J. ; Gerdes, J. Christian, Auteur Article en page(s) : 374-381 p. Note générale : Génie Mécanique Langues : Anglais (eng) Mots-clés : Allumage spontané homogène Moteur à combustion Controleur Cinétique chimique Masse de commande Echappement Propane Index. décimale : 620.1/389 Résumé : One practical method for achieving homogeneous charge compression ignition (HCCI) in internal combustion engines is to modulate the valve to trup or reinduct exhaust gases, increasing the energy of the charge, and enabling autoignition. Controlling combustion phacing with valve modulation can be challenging, however, since any controller must operate through the chemical kinetics of HCCI and account for the cycle to cycle dynamics arising from the retained exhaust gas. This paper presents a simple model of the overall HCCI process that captures these fondamental aspects. The model uses and integrated Arrhenius rate expression to capture the importance of species concentrations and temperature on the ignition process and predict the start of combustion. The cycle to cycle dynamics, in turn, develop through mass exchange between a control volume representing the cylinderand a control mass modeling the exhaust manifold. Despite its simplicity, the model predicts combustion phasing, pressure evolution and work output for propane combustion experiments at levels of fidelity comparable to more complex representations. Transient responses to valve timing changes are also captured and, with minor modification, the model can, in principle, be extended to handle a variety of fuels.
Une méthode pratique pour réaliser l'allumage spontané homogène de charge (HCCI) dans des moteurs à combustion interne est de moduler la valve aux gaz d'échappement de trup ou de reinduct, augmentant l'énergie de la charge, et permettant l'auto-allumage. La combustion de contrôle phacing avec la modulation de valve peut être provocante, cependant, puisque n'importe quel contrôleur doit fonctionner par la cinétique chimique de HCCI et expliquer le cycle pour faire un cycle la dynamique résultant du gaz d'échappement maintenu. Cet article présente un modèle simple du processus global de HCCI qui capture ces aspects fondamental. Les utilisations de modèle et l'expression intégrée de taux d'Arrhenius de capturer l'importance des concentrations et de la température d'espèces sur le procédé d'allumage et de prévoir le début de la combustion. Le cycle pour faire un cycle la dynamique, à leur tour, se développent par l'échange de masse entre un volume de commande représentant le cylindre et une masse de commande modelant la tubulure d'échappement. En dépit de sa simplicité, le modèle prévoit la combustion mettant en phase, pressurise l'évolution et fonctionne le rendement pour des expériences de combustion de propane aux niveaux de la fidélité comparables à des représentations plus complexes. Des réponses passagères aux changements de synchronisation de valve sont également capturées et, avec la modification mineure, le modèle peut, en principe, être prolongé pour manipuler une variété de carburants.En ligne : greg.shaver@gmail.com, gerdes@stanford.edu, roelle@stanford.edu, caton@stanford. [...] [article] Dynamic Modeling of Residual-Affected Homogeneous Charge Compression Ignition Engines with Variable Valve Actuation = Modèle Dynamique des Moteurs Homogènes Affectés d'Allumage Spontané de Charge de Résiduel avec la Mise en Action Variable de Valve [texte imprimé] / Shaver, Gregory. M., Auteur ; Edwards, Christopher F. ; Caton, Patrick A. ; Roelle, Matthew, J. ; Gerdes, J. Christian, Auteur . - 374-381 p.
Génie Mécanique
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 127, N° 3 (Septembre 2005) . - 374-381 p.
Mots-clés : Allumage spontané homogène Moteur à combustion Controleur Cinétique chimique Masse de commande Echappement Propane Index. décimale : 620.1/389 Résumé : One practical method for achieving homogeneous charge compression ignition (HCCI) in internal combustion engines is to modulate the valve to trup or reinduct exhaust gases, increasing the energy of the charge, and enabling autoignition. Controlling combustion phacing with valve modulation can be challenging, however, since any controller must operate through the chemical kinetics of HCCI and account for the cycle to cycle dynamics arising from the retained exhaust gas. This paper presents a simple model of the overall HCCI process that captures these fondamental aspects. The model uses and integrated Arrhenius rate expression to capture the importance of species concentrations and temperature on the ignition process and predict the start of combustion. The cycle to cycle dynamics, in turn, develop through mass exchange between a control volume representing the cylinderand a control mass modeling the exhaust manifold. Despite its simplicity, the model predicts combustion phasing, pressure evolution and work output for propane combustion experiments at levels of fidelity comparable to more complex representations. Transient responses to valve timing changes are also captured and, with minor modification, the model can, in principle, be extended to handle a variety of fuels.
Une méthode pratique pour réaliser l'allumage spontané homogène de charge (HCCI) dans des moteurs à combustion interne est de moduler la valve aux gaz d'échappement de trup ou de reinduct, augmentant l'énergie de la charge, et permettant l'auto-allumage. La combustion de contrôle phacing avec la modulation de valve peut être provocante, cependant, puisque n'importe quel contrôleur doit fonctionner par la cinétique chimique de HCCI et expliquer le cycle pour faire un cycle la dynamique résultant du gaz d'échappement maintenu. Cet article présente un modèle simple du processus global de HCCI qui capture ces aspects fondamental. Les utilisations de modèle et l'expression intégrée de taux d'Arrhenius de capturer l'importance des concentrations et de la température d'espèces sur le procédé d'allumage et de prévoir le début de la combustion. Le cycle pour faire un cycle la dynamique, à leur tour, se développent par l'échange de masse entre un volume de commande représentant le cylindre et une masse de commande modelant la tubulure d'échappement. En dépit de sa simplicité, le modèle prévoit la combustion mettant en phase, pressurise l'évolution et fonctionne le rendement pour des expériences de combustion de propane aux niveaux de la fidélité comparables à des représentations plus complexes. Des réponses passagères aux changements de synchronisation de valve sont également capturées et, avec la modification mineure, le modèle peut, en principe, être prolongé pour manipuler une variété de carburants.En ligne : greg.shaver@gmail.com, gerdes@stanford.edu, roelle@stanford.edu, caton@stanford. [...] Physics-based modeling and control of residual-affected HCCI engines / Shaver, Gregory. M. in Transactions of the ASME . Journal of dynamic systems, measurement, and control, Vol. 131 N°2 (Mars/Avril 2009)
[article]
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N°2 (Mars/Avril 2009) . - 12 p.
Titre : Physics-based modeling and control of residual-affected HCCI engines Type de document : texte imprimé Auteurs : Shaver, Gregory. M., Auteur ; Gerdes, Christian J., Auteur ; Roelle, Matthew, J., Auteur Année de publication : 2009 Article en page(s) : 12 p. Note générale : dynamic systems Langues : Anglais (eng) Mots-clés : physics; pressure; combustion; control equipment; engines; valves; compression; cycles; cylinders; exhaust systems; model validation; homogeneous charge compression ignition engines Résumé : Homogeneous charge compression ignition (HCCI) is a novel combustion strategy for IC engines that exhibits dramatic decreases in fuel consumption and exhaust emissions. Originally conceived in 1979, the HCCI methodology has been revisited several times by industry but has yet to be implemented because the process is difficult to control. To help address these control challenges, the authors here outline the first generalizable, validated, and experimentally implemented physics-based control methodology for residual-affected HCCI engines. Specifically, the paper describes the formulation and validation of a two-input, two-state control-oriented system model of the residual-affected HCCI process occurring in a single engine cylinder. The combustion timing and peak pressure are the model states, while the inducted gas composition and effective compression ratio are the model inputs. The resulting model accurately captures the system dynamics and allows the simultaneous, coordinated control of both in-cylinder pressure and combustion timing. To demonstrate this, an H2 optimal controller is synthesized from a linearized version of the model and used to dictate step changes in both combustion timing and peak pressure within about four to five engine cycles on an experimental test bed. The application of control also results in reductions in the standard deviation for both combustion timing and peak pressure. The approach therefore provides accurate mean tracking, as well as a reduction in cyclic dispersion. Another benefit of the simultaneous coordination of both control inputs is a reduction in the control effort required to elicit the desired response. Instead of using a peak pressure controller that must compensate for the effects of a combustion timing controller, and vice versa, the coordinated approach optimizes the use of both control inputs to regulate both outputs. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...] [article] Physics-based modeling and control of residual-affected HCCI engines [texte imprimé] / Shaver, Gregory. M., Auteur ; Gerdes, Christian J., Auteur ; Roelle, Matthew, J., Auteur . - 2009 . - 12 p.
dynamic systems
Langues : Anglais (eng)
in Transactions of the ASME . Journal of dynamic systems, measurement, and control > Vol. 131 N°2 (Mars/Avril 2009) . - 12 p.
Mots-clés : physics; pressure; combustion; control equipment; engines; valves; compression; cycles; cylinders; exhaust systems; model validation; homogeneous charge compression ignition engines Résumé : Homogeneous charge compression ignition (HCCI) is a novel combustion strategy for IC engines that exhibits dramatic decreases in fuel consumption and exhaust emissions. Originally conceived in 1979, the HCCI methodology has been revisited several times by industry but has yet to be implemented because the process is difficult to control. To help address these control challenges, the authors here outline the first generalizable, validated, and experimentally implemented physics-based control methodology for residual-affected HCCI engines. Specifically, the paper describes the formulation and validation of a two-input, two-state control-oriented system model of the residual-affected HCCI process occurring in a single engine cylinder. The combustion timing and peak pressure are the model states, while the inducted gas composition and effective compression ratio are the model inputs. The resulting model accurately captures the system dynamics and allows the simultaneous, coordinated control of both in-cylinder pressure and combustion timing. To demonstrate this, an H2 optimal controller is synthesized from a linearized version of the model and used to dictate step changes in both combustion timing and peak pressure within about four to five engine cycles on an experimental test bed. The application of control also results in reductions in the standard deviation for both combustion timing and peak pressure. The approach therefore provides accurate mean tracking, as well as a reduction in cyclic dispersion. Another benefit of the simultaneous coordination of both control inputs is a reduction in the control effort required to elicit the desired response. Instead of using a peak pressure controller that must compensate for the effects of a combustion timing controller, and vice versa, the coordinated approach optimizes the use of both control inputs to regulate both outputs. DEWEY : 629.8 ISSN : 0022-0434 En ligne : http://dynamicsystems.asmedigitalcollection.asme.org/issue.aspx?journalid=117&is [...]