Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Rong Xiang
Documents disponibles écrits par cet auteur
Affiner la rechercheChemical vapor deposition growth, optical, and thermal characterization of vertically aligned single-walled carbon nanotubes / Shigeo Maruyama in Journal of heat transfer, Vol. 134 N° 5 (Mai 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 06 p.
Titre : Chemical vapor deposition growth, optical, and thermal characterization of vertically aligned single-walled carbon nanotubes Type de document : texte imprimé Auteurs : Shigeo Maruyama, Auteur ; Rong Xiang, Auteur Année de publication : 2012 Article en page(s) : 06 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : single-walled carbon nanotube (SWNT) Roman spectroscopy; growth mechanism; patterning; thermal property Index. décimale : 536 Chaleur. Thermodynamique Résumé : Vertically aligned single-walled carbon nanotubes (VA-SWNTs) is expected to be an extra-ordinal material for various optical, electrical, energy, and thermal devices. The recent progress in growth control and characterization techniques will be discussed. The chemical vapor deposition (CVD) growth mechanism of VA-SWNTs is studied based on the in situ growth monitoring by laser absorption during CVD. The growth curves are characterized by an exponential decay of the growth rate from the initial rate determined by ethanol pressure. The initial growth rate and decay of it are discussed with carbon over-coat on metal catalysts and gas phase thermal decomposition of precursor ethanol. For the precisely patterned growth of SWNTs, we recently propose a surface-energy-difference driven selective deposition of catalyst for localized growth of SWNTs. For a self-assembled monolayer (SAM) patterned Si surface, catalyst particles deposit and SWNTs grow only on the hydrophilic regions. The proposed all-liquid-based approach possesses significant advantages in scalability and resolution over state-of-the-art techniques, which we believe can greatly advance the fabrication of nanodevices using high-quality as-grown SWNTs. The optical characterization of the VA-SWNT film using polarized absorption, polarized Raman, and photoluminescence spectroscopy will be discussed. Laser-excitation of a vertically aligned film from top means that each nanotube is excited perpendicular to its axis. Because of this predominant perpendicular excitation, interesting cross-polarized absorption and confusing and practically important Raman features are observed. The extremely high and peculiar thermal conductivity of single-walled carbon nanotubes has been explored by nonequilibrium molecular dynamics simulation approaches. The thermal properties of the vertically aligned film and composite materials are studied by several experimental techniques and Monte Carlo simulations based on molecular dynamics inputs of thermal conductivity and thermal boundary resistance. Current understanding of thermal properties of the film is discussed. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...] [article] Chemical vapor deposition growth, optical, and thermal characterization of vertically aligned single-walled carbon nanotubes [texte imprimé] / Shigeo Maruyama, Auteur ; Rong Xiang, Auteur . - 2012 . - 06 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 06 p.
Mots-clés : single-walled carbon nanotube (SWNT) Roman spectroscopy; growth mechanism; patterning; thermal property Index. décimale : 536 Chaleur. Thermodynamique Résumé : Vertically aligned single-walled carbon nanotubes (VA-SWNTs) is expected to be an extra-ordinal material for various optical, electrical, energy, and thermal devices. The recent progress in growth control and characterization techniques will be discussed. The chemical vapor deposition (CVD) growth mechanism of VA-SWNTs is studied based on the in situ growth monitoring by laser absorption during CVD. The growth curves are characterized by an exponential decay of the growth rate from the initial rate determined by ethanol pressure. The initial growth rate and decay of it are discussed with carbon over-coat on metal catalysts and gas phase thermal decomposition of precursor ethanol. For the precisely patterned growth of SWNTs, we recently propose a surface-energy-difference driven selective deposition of catalyst for localized growth of SWNTs. For a self-assembled monolayer (SAM) patterned Si surface, catalyst particles deposit and SWNTs grow only on the hydrophilic regions. The proposed all-liquid-based approach possesses significant advantages in scalability and resolution over state-of-the-art techniques, which we believe can greatly advance the fabrication of nanodevices using high-quality as-grown SWNTs. The optical characterization of the VA-SWNT film using polarized absorption, polarized Raman, and photoluminescence spectroscopy will be discussed. Laser-excitation of a vertically aligned film from top means that each nanotube is excited perpendicular to its axis. Because of this predominant perpendicular excitation, interesting cross-polarized absorption and confusing and practically important Raman features are observed. The extremely high and peculiar thermal conductivity of single-walled carbon nanotubes has been explored by nonequilibrium molecular dynamics simulation approaches. The thermal properties of the vertically aligned film and composite materials are studied by several experimental techniques and Monte Carlo simulations based on molecular dynamics inputs of thermal conductivity and thermal boundary resistance. Current understanding of thermal properties of the film is discussed. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...] Feedstock diffusion and decomposition in aligned carbon nanotube arrays / Rong Xiang in Journal of heat transfer, Vol. 134 N° 5 (Mai 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 04 p.
Titre : Feedstock diffusion and decomposition in aligned carbon nanotube arrays Type de document : texte imprimé Auteurs : Rong Xiang, Auteur ; Erik Einarsson, Auteur ; Junichiro Shiomi, Auteur Année de publication : 2012 Article en page(s) : 04 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : carbon nanotube (CNT); feedstock diffusion; thermal decomposition; growth mechanism Index. décimale : 536 Chaleur. Thermodynamique Résumé : Feedstock diffusion and decomposition in the root growth of aligned carbon nanotube (CNT) arrays is discussed. A nondimensional modulus is proposed to differentiate catalyst poisoning controlled growth deceleration from one which is diffusion controlled. It is found that, at present, aligned multiwalled carbon nanotube (MWNT) arrays are usually free of feedstock diffusion resistance. However, for single-walled carbon nanotube (SWNT) arrays, since the intertube distance is much smaller than the mean free path of carbon source (ethanol here), high diffusion resistance in some currently available samples is significantly limiting the growth rate. The method presented here is also able to predict the critical lengths in different chemical vapor deposition (CVD) processes from which CNT arrays begin to meet this diffusion limit, as well as the possible solutions to this diffusion caused growth deceleration. The diffusion of carbon source inside of an array becomes more important when we found ethanol undergoes severe thermal decomposition at the reaction temperature. This means, in a typical alcohol CVD, hydrocarbons and radicals decomposed from ethanol may collide and react with the outer walls of SWNTs before reaching catalyst particles. When flow rate is low and ethanol is thoroughly decomposed, the produced SWNTs contain more soot structures than the SWNTs obtained at higher ethanol flow rate. Understanding the mass transport and reaction inside a SWNT array is helpful to synthesize longer and cleaner SWNTs. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...] [article] Feedstock diffusion and decomposition in aligned carbon nanotube arrays [texte imprimé] / Rong Xiang, Auteur ; Erik Einarsson, Auteur ; Junichiro Shiomi, Auteur . - 2012 . - 04 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 5 (Mai 2012) . - 04 p.
Mots-clés : carbon nanotube (CNT); feedstock diffusion; thermal decomposition; growth mechanism Index. décimale : 536 Chaleur. Thermodynamique Résumé : Feedstock diffusion and decomposition in the root growth of aligned carbon nanotube (CNT) arrays is discussed. A nondimensional modulus is proposed to differentiate catalyst poisoning controlled growth deceleration from one which is diffusion controlled. It is found that, at present, aligned multiwalled carbon nanotube (MWNT) arrays are usually free of feedstock diffusion resistance. However, for single-walled carbon nanotube (SWNT) arrays, since the intertube distance is much smaller than the mean free path of carbon source (ethanol here), high diffusion resistance in some currently available samples is significantly limiting the growth rate. The method presented here is also able to predict the critical lengths in different chemical vapor deposition (CVD) processes from which CNT arrays begin to meet this diffusion limit, as well as the possible solutions to this diffusion caused growth deceleration. The diffusion of carbon source inside of an array becomes more important when we found ethanol undergoes severe thermal decomposition at the reaction temperature. This means, in a typical alcohol CVD, hydrocarbons and radicals decomposed from ethanol may collide and react with the outer walls of SWNTs before reaching catalyst particles. When flow rate is low and ethanol is thoroughly decomposed, the produced SWNTs contain more soot structures than the SWNTs obtained at higher ethanol flow rate. Understanding the mass transport and reaction inside a SWNT array is helpful to synthesize longer and cleaner SWNTs. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000005 [...]