Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Geoffrey M. Haas
Documents disponibles écrits par cet auteur
Affiner la rechercheThermophysical phenomena associated with nano-droplet impingement on a solid surface / Geoffrey M. Haas in Journal of heat transfer, Vol. 134 N° 7 (Juillet 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 7 (Juillet 2012) . - 07 p.
Titre : Thermophysical phenomena associated with nano-droplet impingement on a solid surface Type de document : texte imprimé Auteurs : Geoffrey M. Haas, Auteur ; Aaron P. Wemhoff, Auteur Année de publication : 2012 Article en page(s) : 07 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : molecular dynamics; droplet impingement; spray cooling Index. décimale : 536 Chaleur. Thermodynamique Résumé : The thermophysical properties pertaining to the impingement of a nano-droplet onto a solid surface were investigated using molecular dynamics (MD) simulations. The MD simulations used data collection for an entire group of molecules to investigate the propagation of energy in the system. Simulations of a moving nano-droplet colliding with a stationary solid were performed to determine the heat transfer between the droplet and the surface. It was discovered that the droplet-substrate collision caused the droplet temperature to rise significantly upon impact. The substrate also experiences a temperature jump with a slower response time. A theoretical relation for the substrate temperature jump is also developed that shows reasonable agreement with the MD simulations for small droplet diameters. Increasing the diameter of the droplet from 2.0 nm to 4.5 nm showed a gain in the total added substrate kinetic energy. Varying the initial speed of the droplet from 10 m/s to 40 m/s showed no significant difference in the applied kinetic energy onto the substrate, suggesting that the acceleration of the droplet toward the surface due to intermolecular interactions produces an impact speed relatively independent of the initial droplet bulk speed. These trends were also reflected in a thermodynamically based simple theoretical prediction of collision energy, which was shown to be accurate for droplet diameters up to 3.5 nm. The collision energy was estimated to be on the order of 1–10 eV, and the applied heat flux is on the order of GW/m2. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000007 [...] [article] Thermophysical phenomena associated with nano-droplet impingement on a solid surface [texte imprimé] / Geoffrey M. Haas, Auteur ; Aaron P. Wemhoff, Auteur . - 2012 . - 07 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 7 (Juillet 2012) . - 07 p.
Mots-clés : molecular dynamics; droplet impingement; spray cooling Index. décimale : 536 Chaleur. Thermodynamique Résumé : The thermophysical properties pertaining to the impingement of a nano-droplet onto a solid surface were investigated using molecular dynamics (MD) simulations. The MD simulations used data collection for an entire group of molecules to investigate the propagation of energy in the system. Simulations of a moving nano-droplet colliding with a stationary solid were performed to determine the heat transfer between the droplet and the surface. It was discovered that the droplet-substrate collision caused the droplet temperature to rise significantly upon impact. The substrate also experiences a temperature jump with a slower response time. A theoretical relation for the substrate temperature jump is also developed that shows reasonable agreement with the MD simulations for small droplet diameters. Increasing the diameter of the droplet from 2.0 nm to 4.5 nm showed a gain in the total added substrate kinetic energy. Varying the initial speed of the droplet from 10 m/s to 40 m/s showed no significant difference in the applied kinetic energy onto the substrate, suggesting that the acceleration of the droplet toward the surface due to intermolecular interactions produces an impact speed relatively independent of the initial droplet bulk speed. These trends were also reflected in a thermodynamically based simple theoretical prediction of collision energy, which was shown to be accurate for droplet diameters up to 3.5 nm. The collision energy was estimated to be on the order of 1–10 eV, and the applied heat flux is on the order of GW/m2. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000007 [...]