Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Reza Marsooli
Documents disponibles écrits par cet auteur
Affiner la rechercheA depth-averaged 2D shallow water model for breaking and non-breaking long waves affected by rigid vegetation / Wu, Weiming in Journal of hydraulic research, Vol. 50 N° 6 (Novembre/Décembre 2012)
[article]
in Journal of hydraulic research > Vol. 50 N° 6 (Novembre/Décembre 2012) . - pp. 558-575
Titre : A depth-averaged 2D shallow water model for breaking and non-breaking long waves affected by rigid vegetation Type de document : texte imprimé Auteurs : Wu, Weiming, Auteur ; Reza Marsooli, Auteur Année de publication : 2013 Article en page(s) : pp. 558-575 Note générale : Hydraulique Langues : Anglais (eng) Mots-clés : Approximate Riemann solver Breaking waves Depth-averaged two-dimensional model Finite-volume method Long waves Rigid vegetation Résumé : This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The drag coefficient is treated as a calibrated bulk constant and also determined using two empirical formulas as functions of stem Reynolds number, Froude number, and vegetation volume fraction. The governing equations are solved using an explicit finite-volume method based on rectangular mesh with the Harten, Lax, and van Leer approximate Riemann solver with second-order piecewise linear reconstruction for the streamwise convection fluxes, a second-order upwind scheme for the lateral convection fluxes, and a stable centred difference scheme for the water surface gradient terms. The model was tested using five laboratory experiments, including steady flow in a flume with alternate vegetation zones, solitary wave in a vegetated flatbed flume, long-wave runup on a partially-vegetated sloping beach, the dam-break wave overtopping an obstacle, and breaking the solitary wave on a sloping beach. The computed water levels, flow velocities, wave heights, and runups are in generally good agreement with experimental observations. The model was then applied to assess the hydrodynamic effectiveness and limitations of vegetation in coastal and river protection. It is shown that vegetation along the coastal shoreline has a positive benefit in reducing wave runup on sloping beaches, whereas vegetation in open channels causes conflicting impacts: reducing inundation in the downstream areas, but increasing flood risk in a certain distance upstream. ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/full/10.1080/00221686.2012.734534 [article] A depth-averaged 2D shallow water model for breaking and non-breaking long waves affected by rigid vegetation [texte imprimé] / Wu, Weiming, Auteur ; Reza Marsooli, Auteur . - 2013 . - pp. 558-575.
Hydraulique
Langues : Anglais (eng)
in Journal of hydraulic research > Vol. 50 N° 6 (Novembre/Décembre 2012) . - pp. 558-575
Mots-clés : Approximate Riemann solver Breaking waves Depth-averaged two-dimensional model Finite-volume method Long waves Rigid vegetation Résumé : This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The drag coefficient is treated as a calibrated bulk constant and also determined using two empirical formulas as functions of stem Reynolds number, Froude number, and vegetation volume fraction. The governing equations are solved using an explicit finite-volume method based on rectangular mesh with the Harten, Lax, and van Leer approximate Riemann solver with second-order piecewise linear reconstruction for the streamwise convection fluxes, a second-order upwind scheme for the lateral convection fluxes, and a stable centred difference scheme for the water surface gradient terms. The model was tested using five laboratory experiments, including steady flow in a flume with alternate vegetation zones, solitary wave in a vegetated flatbed flume, long-wave runup on a partially-vegetated sloping beach, the dam-break wave overtopping an obstacle, and breaking the solitary wave on a sloping beach. The computed water levels, flow velocities, wave heights, and runups are in generally good agreement with experimental observations. The model was then applied to assess the hydrodynamic effectiveness and limitations of vegetation in coastal and river protection. It is shown that vegetation along the coastal shoreline has a positive benefit in reducing wave runup on sloping beaches, whereas vegetation in open channels causes conflicting impacts: reducing inundation in the downstream areas, but increasing flood risk in a certain distance upstream. ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/full/10.1080/00221686.2012.734534