Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Piyush Kumar Singh
Documents disponibles écrits par cet auteur
Affiner la rechercheOptimum Nusselt number for simultaneously developing internal flow under conjugate conditions in a square microchannel / Manoj Kumar Moharana in Journal of heat transfer, Vol. 134 N° 7 (Juillet 2012)
[article]
in Journal of heat transfer > Vol. 134 N° 7 (Juillet 2012) . - 10 p.
Titre : Optimum Nusselt number for simultaneously developing internal flow under conjugate conditions in a square microchannel Type de document : texte imprimé Auteurs : Manoj Kumar Moharana, Auteur ; Piyush Kumar Singh, Auteur ; Sameer Khandekar, Auteur Année de publication : 2012 Article en page(s) : 10 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : microchannel; axial heat conduction; conjugate heat transfer; thermally developing flow; optimum Nusselt number Index. décimale : 536 Chaleur. Thermodynamique Résumé : A numerical study has been carried out to understand and highlight the effects of axial wall conduction in a conjugate heat transfer situation involving simultaneously developing laminar flow and heat transfer in a square microchannel with constant flux boundary condition imposed on bottom of the substrate wall. All the remaining walls of the substrate exposed to the surroundings are kept adiabatic. Simulations have been carried out for a wide range of substrate wall to fluid conductivity ratio (ksf ~ 0.17–703), substrate thickness to channel depth (deltasf ~ 1–24), and flow rate (Re ~ 100–1000). These parametric variations cover the typical range of applications encountered in microfluids/microscale heat transfer domains. The results show that the conductivity ratio, ksf is the key factor in affecting the extent of axial conduction on the heat transport characteristics at the fluid–solid interface. Higher ksf leads to severe axial back conduction, thus decreasing the average Nusselt number ([overline Nu]). Very low ksf leads to a situation which is qualitatively similar to the case of zero-thickness substrate with constant heat flux applied to only one side, all the three remaining sides being kept adiabatic; this again leads to lower the average Nusselt number ([overline Nu]). Between these two asymptotic limits of ksf, it is shown that, all other parameters remaining the same (deltasf and Re), there exists an optimum value of ksf which maximizes the average Nusselt number ([overline Nu]). Such a phenomenon also exists for the case of circular microtubes. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000007 [...] [article] Optimum Nusselt number for simultaneously developing internal flow under conjugate conditions in a square microchannel [texte imprimé] / Manoj Kumar Moharana, Auteur ; Piyush Kumar Singh, Auteur ; Sameer Khandekar, Auteur . - 2012 . - 10 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol. 134 N° 7 (Juillet 2012) . - 10 p.
Mots-clés : microchannel; axial heat conduction; conjugate heat transfer; thermally developing flow; optimum Nusselt number Index. décimale : 536 Chaleur. Thermodynamique Résumé : A numerical study has been carried out to understand and highlight the effects of axial wall conduction in a conjugate heat transfer situation involving simultaneously developing laminar flow and heat transfer in a square microchannel with constant flux boundary condition imposed on bottom of the substrate wall. All the remaining walls of the substrate exposed to the surroundings are kept adiabatic. Simulations have been carried out for a wide range of substrate wall to fluid conductivity ratio (ksf ~ 0.17–703), substrate thickness to channel depth (deltasf ~ 1–24), and flow rate (Re ~ 100–1000). These parametric variations cover the typical range of applications encountered in microfluids/microscale heat transfer domains. The results show that the conductivity ratio, ksf is the key factor in affecting the extent of axial conduction on the heat transport characteristics at the fluid–solid interface. Higher ksf leads to severe axial back conduction, thus decreasing the average Nusselt number ([overline Nu]). Very low ksf leads to a situation which is qualitatively similar to the case of zero-thickness substrate with constant heat flux applied to only one side, all the three remaining sides being kept adiabatic; this again leads to lower the average Nusselt number ([overline Nu]). Between these two asymptotic limits of ksf, it is shown that, all other parameters remaining the same (deltasf and Re), there exists an optimum value of ksf which maximizes the average Nusselt number ([overline Nu]). Such a phenomenon also exists for the case of circular microtubes. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000007 [...]