Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Chunshui Yu
Documents disponibles écrits par cet auteur
Affiner la rechercheTwo-dimensional depth-averaged finite volume model for unsteady turbulent flow / Chunshui Yu in Journal of hydraulic research, Vol. 50 N° 6 (Novembre/Décembre 2012)
[article]
in Journal of hydraulic research > Vol. 50 N° 6 (Novembre/Décembre 2012) . - pp. 599-611
Titre : Two-dimensional depth-averaged finite volume model for unsteady turbulent flow Type de document : texte imprimé Auteurs : Chunshui Yu, Auteur ; Jennifer Duan, Auteur Année de publication : 2013 Article en page(s) : pp. 599-611 Note générale : Hydraulique Langues : Anglais (eng) Mots-clés : Cartesian cut-cell method Depth-averaged RANS equation HLLC Riemann solver k−ϵturbulence model MUSCL scheme TVD Runge–Kutta scheme Well-balanced scheme Wet–dry front capturing method Résumé : A two-dimensional (2D) depth-averaged model is developed for simulating unsteady turbulent shallow-water flows with dry–wet fronts (e.g. dam-break flow). The model is based on 2D depth-averaged Reynolds-averaged Navier stokes equations coupled with the k−ϵ turbulence model. The high-resolution MUSCL scheme (monotone upstream-centred schemes for conservation laws) is implemented to minimize numerical diffusions. A novel augmented Harten–Lax–van Leer-contact Riemann solver is used to solve the governing equations simultaneously. A body-fitted mesh is generated by using the Cartesian cut-cell method to accommodate irregular boundaries. The model is tested against two laboratory experiments to examine whether or not turbulence model is essential for simulating unsteady turbulent flow. The results show that the addition of the k−ϵ turbulence model significantly improves the modelling results at places of strong turbulence activities. To further improve the results, a more accurate turbulence model for unsteady flow and dispersion terms in the momentum equations is needed. ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/full/10.1080/00221686.2012.730556 [article] Two-dimensional depth-averaged finite volume model for unsteady turbulent flow [texte imprimé] / Chunshui Yu, Auteur ; Jennifer Duan, Auteur . - 2013 . - pp. 599-611.
Hydraulique
Langues : Anglais (eng)
in Journal of hydraulic research > Vol. 50 N° 6 (Novembre/Décembre 2012) . - pp. 599-611
Mots-clés : Cartesian cut-cell method Depth-averaged RANS equation HLLC Riemann solver k−ϵturbulence model MUSCL scheme TVD Runge–Kutta scheme Well-balanced scheme Wet–dry front capturing method Résumé : A two-dimensional (2D) depth-averaged model is developed for simulating unsteady turbulent shallow-water flows with dry–wet fronts (e.g. dam-break flow). The model is based on 2D depth-averaged Reynolds-averaged Navier stokes equations coupled with the k−ϵ turbulence model. The high-resolution MUSCL scheme (monotone upstream-centred schemes for conservation laws) is implemented to minimize numerical diffusions. A novel augmented Harten–Lax–van Leer-contact Riemann solver is used to solve the governing equations simultaneously. A body-fitted mesh is generated by using the Cartesian cut-cell method to accommodate irregular boundaries. The model is tested against two laboratory experiments to examine whether or not turbulence model is essential for simulating unsteady turbulent flow. The results show that the addition of the k−ϵ turbulence model significantly improves the modelling results at places of strong turbulence activities. To further improve the results, a more accurate turbulence model for unsteady flow and dispersion terms in the momentum equations is needed. ISSN : 0022-1686 En ligne : http://www.tandfonline.com/doi/full/10.1080/00221686.2012.730556