Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ti Ouyang
Documents disponibles écrits par cet auteur
Affiner la rechercheConstant thickness porous layer model for reaction between gas and dense carbonaceous materials / Eric A. Morris in Industrial & engineering chemistry research, Vol. 51 N° 44 (Novembre 2012)
[article]
in Industrial & engineering chemistry research > Vol. 51 N° 44 (Novembre 2012) . - pp. 14376-14383
Titre : Constant thickness porous layer model for reaction between gas and dense carbonaceous materials Type de document : texte imprimé Auteurs : Eric A. Morris, Auteur ; Rex Choi, Auteur ; Ti Ouyang, Auteur Année de publication : 2013 Article en page(s) : pp. 14376-14383 Note générale : Industrial chemistry Langues : Anglais (eng) Mots-clés : Modeling Résumé : Using oil-sands petroleum coke as the raw material and sulfur dioxide as the activating agent at 700 °C, the process of pore development in dense carbonaceous materials was studied. The time dependence of porosity was established from measured values of specific surface area (SSA), which could not be explained using conventional porous layer theories. Incorporating the Random Pore Model with measurements of particle size and porous layer thickness, a model was developed based on the existence of a porous layer of constant thickness. The model was found to accurately reproduce experimental time dependence of SSA. The results confirm a constant thickness of the porous layer for the activation conditions studied, which results from competing effects of carbon gasification reaction and penetration of the activating agent into the carbon particle interior. The model predicts a higher achievable SSA for a greater constant porous layer thickness, smaller initial particle size, and lower inorganic ash content. This model was found to be useful in predicting the maximum porous layer thickness of a dense material undergoing activation or gasification using only measured values of SSA, pore size distribution, and particle size as inputs. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26620351 [article] Constant thickness porous layer model for reaction between gas and dense carbonaceous materials [texte imprimé] / Eric A. Morris, Auteur ; Rex Choi, Auteur ; Ti Ouyang, Auteur . - 2013 . - pp. 14376-14383.
Industrial chemistry
Langues : Anglais (eng)
in Industrial & engineering chemistry research > Vol. 51 N° 44 (Novembre 2012) . - pp. 14376-14383
Mots-clés : Modeling Résumé : Using oil-sands petroleum coke as the raw material and sulfur dioxide as the activating agent at 700 °C, the process of pore development in dense carbonaceous materials was studied. The time dependence of porosity was established from measured values of specific surface area (SSA), which could not be explained using conventional porous layer theories. Incorporating the Random Pore Model with measurements of particle size and porous layer thickness, a model was developed based on the existence of a porous layer of constant thickness. The model was found to accurately reproduce experimental time dependence of SSA. The results confirm a constant thickness of the porous layer for the activation conditions studied, which results from competing effects of carbon gasification reaction and penetration of the activating agent into the carbon particle interior. The model predicts a higher achievable SSA for a greater constant porous layer thickness, smaller initial particle size, and lower inorganic ash content. This model was found to be useful in predicting the maximum porous layer thickness of a dense material undergoing activation or gasification using only measured values of SSA, pore size distribution, and particle size as inputs. ISSN : 0888-5885 En ligne : http://cat.inist.fr/?aModele=afficheN&cpsidt=26620351