Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Liwu Fan
Documents disponibles écrits par cet auteur
Affiner la rechercheA Theoretical and Experimental Investigation of unidirectional freezing of nanoparticle-enhanced phase change materials / Liwu Fan in Journal of heat transfer, Vol 134 N° 9 (Septembre 2012)
[article]
in Journal of heat transfer > Vol 134 N° 9 (Septembre 2012) . - 09 p.
Titre : A Theoretical and Experimental Investigation of unidirectional freezing of nanoparticle-enhanced phase change materials Type de document : texte imprimé Auteurs : Liwu Fan, Auteur ; J. M. Khodadadi, Auteur Année de publication : 2012 Article en page(s) : 09 p. Note générale : heat transfer Langues : Anglais (eng) Mots-clés : colloids; freezing; nanoparticles; nanostructures; PCM; phase change; solidifaction; Stefan model; suspensions; thermal conductivity Index. décimale : 536 Chaleur. Thermodynamique Résumé : Highly-conductive nanostructures may be dispersed into phase change materials (PCM) to improve their effective thermal conductivity, thus leading to colloidal systems that are referred to as nanostructure-enhanced PCM (NePCM). Results of a theoretical and experimental investigation on freezing of NePCM in comparison to the base PCM are presented. A one-dimensional Stefan model was developed to study the unidirectional freezing of NePCM in a finite slab. Only the thermal energy equation was considered and the presence of static dispersed nanoparticles was modeled using effective media relations. A combination of analytical and integral methods was used to solve this moving boundary problem. The elapsed time to form a given thickness of frozen layer was therefore predicted numerically. A cooled-from-bottom unidirectional freezing experimental setup was designed, constructed, and tested. Thermocouple readings were recorded at several equally spaced locations along the freezing direction in order to monitor the progress of the freezing front. As an example, cyclohexane (C6H12) and copper oxide (CuO) nanoparticles were chosen to prepare the NePCM samples. The effective thermophysical and transport properties of these samples for various particle loadings (0.5/3.8, 1/7.5, and 2/14.7 vol. %/wt. %) were determined using the mixture and Maxwell models. Due to utilization of the Maxwell model for thermal conductivity of both phases, the numerical predictions showed that the freezing time is shortened linearly with increasing particle loading, whereas nonmonotonic expediting was observed experimentally. The maximum expediting was found to be nearly 8.23% for the 0.5 vol. % sample. In the absence of a nanoparticle transport model, the mismatch of the cold plate boundary conditions, lack of accurate thermophysical properties, especially in the solid phase of NePCM samples and precipitation issues with 2 vol. % samples were addressed by improving the experimental setup. Through adopting a copper cold plate, utilizing measured thermal conductivity data for both phases and using 1, 2, and 4 wt. % samples, good agreement between the experimental and numerical results were realized. Specifically, adoption of measured thermal conductivity values for the solid phase in the Stefan model that were originally underestimated proved to be a major cause of harmony between the experiments and predictions. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000009 [...] [article] A Theoretical and Experimental Investigation of unidirectional freezing of nanoparticle-enhanced phase change materials [texte imprimé] / Liwu Fan, Auteur ; J. M. Khodadadi, Auteur . - 2012 . - 09 p.
heat transfer
Langues : Anglais (eng)
in Journal of heat transfer > Vol 134 N° 9 (Septembre 2012) . - 09 p.
Mots-clés : colloids; freezing; nanoparticles; nanostructures; PCM; phase change; solidifaction; Stefan model; suspensions; thermal conductivity Index. décimale : 536 Chaleur. Thermodynamique Résumé : Highly-conductive nanostructures may be dispersed into phase change materials (PCM) to improve their effective thermal conductivity, thus leading to colloidal systems that are referred to as nanostructure-enhanced PCM (NePCM). Results of a theoretical and experimental investigation on freezing of NePCM in comparison to the base PCM are presented. A one-dimensional Stefan model was developed to study the unidirectional freezing of NePCM in a finite slab. Only the thermal energy equation was considered and the presence of static dispersed nanoparticles was modeled using effective media relations. A combination of analytical and integral methods was used to solve this moving boundary problem. The elapsed time to form a given thickness of frozen layer was therefore predicted numerically. A cooled-from-bottom unidirectional freezing experimental setup was designed, constructed, and tested. Thermocouple readings were recorded at several equally spaced locations along the freezing direction in order to monitor the progress of the freezing front. As an example, cyclohexane (C6H12) and copper oxide (CuO) nanoparticles were chosen to prepare the NePCM samples. The effective thermophysical and transport properties of these samples for various particle loadings (0.5/3.8, 1/7.5, and 2/14.7 vol. %/wt. %) were determined using the mixture and Maxwell models. Due to utilization of the Maxwell model for thermal conductivity of both phases, the numerical predictions showed that the freezing time is shortened linearly with increasing particle loading, whereas nonmonotonic expediting was observed experimentally. The maximum expediting was found to be nearly 8.23% for the 0.5 vol. % sample. In the absence of a nanoparticle transport model, the mismatch of the cold plate boundary conditions, lack of accurate thermophysical properties, especially in the solid phase of NePCM samples and precipitation issues with 2 vol. % samples were addressed by improving the experimental setup. Through adopting a copper cold plate, utilizing measured thermal conductivity data for both phases and using 1, 2, and 4 wt. % samples, good agreement between the experimental and numerical results were realized. Specifically, adoption of measured thermal conductivity values for the solid phase in the Stefan model that were originally underestimated proved to be a major cause of harmony between the experiments and predictions. DEWEY : 536 ISSN : 0022-1481 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JHTRAO000134000009 [...]