Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Kook-Young Ahn
Documents disponibles écrits par cet auteur
Affiner la rechercheForces and surface pressure on a blade moving in front of the admission region / Soo-Yong Cho in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 12 (Décembre 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 12 (Décembre 2010) . - 08 p.
Titre : Forces and surface pressure on a blade moving in front of the admission region Type de document : texte imprimé Auteurs : Soo-Yong Cho, Auteur ; Chong-Hyun Cho, Auteur ; Kook-Young Ahn, Auteur Année de publication : 2011 Article en page(s) : 08 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : blades; confined flow; flow measurement; nozzles; pumps; rotational flow; turbines Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The partial admission technique is widely used to control the output power of turbines. In some cases, it has more merits than full admission. However, additional losses, such as expansion, mixing, or pumping, are generated in partial admission as compared with full admission. Thus, an experiment was conducted in a linear cascade apparatus having a partial admission region in order to investigate the effect of partial admission on a blade row. The admission region was formed by a spouting nozzle installed at the inlet of the linear cascade apparatus. Its cross section was rectangular and its size is 200×200 mm2. The tested blade was axial-type and its chord was 200 mm. Nineteen identical blades were applied to the linear cascade for the partial admission experiment. The blades moved along the rotational direction in front of the admission region, and then operating forces and surface pressures on the blades were measured at the steady state. The experiment was conducted at a Reynolds number of 3×105 based on the chord. The nozzle flow angle was set to 65 deg with a solidity of 1.38 for performance test at the design point. In addition, another two different solidities of 1.25 and 1.67 were applied. From the experimental results, when the solidity was decreased, the maximum rotational force increased but the maximum axial force decreased. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000132000012 [...] [article] Forces and surface pressure on a blade moving in front of the admission region [texte imprimé] / Soo-Yong Cho, Auteur ; Chong-Hyun Cho, Auteur ; Kook-Young Ahn, Auteur . - 2011 . - 08 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 12 (Décembre 2010) . - 08 p.
Mots-clés : blades; confined flow; flow measurement; nozzles; pumps; rotational flow; turbines Turbulence Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : The partial admission technique is widely used to control the output power of turbines. In some cases, it has more merits than full admission. However, additional losses, such as expansion, mixing, or pumping, are generated in partial admission as compared with full admission. Thus, an experiment was conducted in a linear cascade apparatus having a partial admission region in order to investigate the effect of partial admission on a blade row. The admission region was formed by a spouting nozzle installed at the inlet of the linear cascade apparatus. Its cross section was rectangular and its size is 200×200 mm2. The tested blade was axial-type and its chord was 200 mm. Nineteen identical blades were applied to the linear cascade for the partial admission experiment. The blades moved along the rotational direction in front of the admission region, and then operating forces and surface pressures on the blades were measured at the steady state. The experiment was conducted at a Reynolds number of 3×105 based on the chord. The nozzle flow angle was set to 65 deg with a solidity of 1.38 for performance test at the design point. In addition, another two different solidities of 1.25 and 1.67 were applied. From the experimental results, when the solidity was decreased, the maximum rotational force increased but the maximum axial force decreased. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://asmedl.org/getabs/servlet/GetabsServlet?prog=normal&id=JFEGA4000132000012 [...]