Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Nagendra Dittakavi
Documents disponibles écrits par cet auteur
Affiner la rechercheLarge Eddy simulation of turbulent-cavitation interactions in a venturi nozzle / Nagendra Dittakavi in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 12 (Décembre 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 12 (Décembre 2010) . - 11 p.
Titre : Large Eddy simulation of turbulent-cavitation interactions in a venturi nozzle Type de document : texte imprimé Auteurs : Nagendra Dittakavi, Auteur ; Aditya Chunekar, Auteur ; Steven Frankel, Auteur Année de publication : 2011 Article en page(s) : 11 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : pressure; flow (Dynamics); vapors; turbulence; cavitation; vorticity; nozzles; vortices; cavities; collapse; equations; venturi tubes; large Eddy simulation Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Large eddy simulation of turbulent cavitating flow in a venturi nozzle is conducted. The fully compressible Favre-filtered Navier–Stokes equations are coupled with a homogeneous equilibrium cavitation model. The dynamic Smagorinsky subgrid-scale turbulence model is employed to close the filtered nonlinear convection terms. The equations are numerically integrated in the context of a generalized curvilinear coordinate system to facilitate geometric complexities. A sixth-order compact finite difference scheme is employed for the Navier–Stokes equations with the AUSM+-up scheme to handle convective terms in the presence of large density gradients. The stiffness of the system due to the incompressibility of the liquid phase is addressed through an artificial increase in the Mach number. The simulation predicts the formation of a vapor cavity at the venturi throat with an irregular shedding of the small scale vapor structures near the turbulent cavity closure region. The vapor formation at the throat is observed to suppress the velocity fluctuations due to turbulence. The collapse of the vapor structures in the downstream region is a major source of vorticity production, resulting into formation of hair-pin vortices. A detailed analysis of the vorticity transport equation shows a decrease in the vortex-stretching term due to cavitation. A substantial increase in the baroclinic torque is observed in the regions where the vapor structures collapse. A spectra of the pressure fluctuations in the far-field downstream region show an increase in the acoustic noise at high frequencies due to cavitation. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27443 [...] [article] Large Eddy simulation of turbulent-cavitation interactions in a venturi nozzle [texte imprimé] / Nagendra Dittakavi, Auteur ; Aditya Chunekar, Auteur ; Steven Frankel, Auteur . - 2011 . - 11 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 12 (Décembre 2010) . - 11 p.
Mots-clés : pressure; flow (Dynamics); vapors; turbulence; cavitation; vorticity; nozzles; vortices; cavities; collapse; equations; venturi tubes; large Eddy simulation Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Large eddy simulation of turbulent cavitating flow in a venturi nozzle is conducted. The fully compressible Favre-filtered Navier–Stokes equations are coupled with a homogeneous equilibrium cavitation model. The dynamic Smagorinsky subgrid-scale turbulence model is employed to close the filtered nonlinear convection terms. The equations are numerically integrated in the context of a generalized curvilinear coordinate system to facilitate geometric complexities. A sixth-order compact finite difference scheme is employed for the Navier–Stokes equations with the AUSM+-up scheme to handle convective terms in the presence of large density gradients. The stiffness of the system due to the incompressibility of the liquid phase is addressed through an artificial increase in the Mach number. The simulation predicts the formation of a vapor cavity at the venturi throat with an irregular shedding of the small scale vapor structures near the turbulent cavity closure region. The vapor formation at the throat is observed to suppress the velocity fluctuations due to turbulence. The collapse of the vapor structures in the downstream region is a major source of vorticity production, resulting into formation of hair-pin vortices. A detailed analysis of the vorticity transport equation shows a decrease in the vortex-stretching term due to cavitation. A substantial increase in the baroclinic torque is observed in the regions where the vapor structures collapse. A spectra of the pressure fluctuations in the far-field downstream region show an increase in the acoustic noise at high frequencies due to cavitation. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27443 [...]