Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Ehsan Shams
Documents disponibles écrits par cet auteur
Affiner la recherchePrediction of small-scale cavitation in a high speed flow over an open cavity using large-eddy simulation / Ehsan Shams in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 11 (Novembre 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 11 (Novembre 2010) . - 14 p.
Titre : Prediction of small-scale cavitation in a high speed flow over an open cavity using large-eddy simulation Type de document : texte imprimé Auteurs : Ehsan Shams, Auteur ; Sourabh V. Apte, Auteur Année de publication : 2011 Article en page(s) : 14 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : scalars; pressure; flow (dynamics); vapors; eddies (fluid dynamics); cavitation; shear (mechanics); bubbles; cavities Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Large-eddy simulation of flow over an open cavity corresponding to the experimental setup of and (2008, “Cavitation Phenomena Occurring Due to Interaction of Shear Layer Vortices With the Trailing Corner of a Two-Dimensional Open Cavity,” Phys. Fluids, 20(4), p. 041702) is performed. The filtered, incompressible Navier–Stokes equations are solved using a co-located grid finite-volume solver with the dynamic Smagorinsky model for a subgrid-scale closure. The computational grid consists of around 7×106 grid points with 3×106 points clustered around the shear layer, and the boundary layer over the leading edge is resolved. The only input from the experimental data is the mean velocity profile at the inlet condition. The mean flow is superimposed with turbulent velocity fluctuations generated by solving a forced periodic duct flow at a freestream Reynolds number. The flow statistics, including mean and rms velocity fields and pressure coefficients, are compared with the experimental data to show reasonable agreement. The dynamic interactions between traveling vortices in the shear layer and the trailing edge affect the value and location of the pressure minima. Cavitation inception is investigated using two approaches: (i) a discrete bubble model wherein the bubble dynamics is computed by solving the Rayleigh–Plesset and the bubble motion equations using an adaptive time-stepping procedure and (ii) a scalar transport model for the liquid volume fraction with source and sink terms for phase change. Large-eddy simulation, together with the cavitation models, predicts that inception occurs near the trailing edge similar to that observed in the experiments. The bubble transport model captures the subgrid dynamics of the vapor better, whereas the scalar model captures the large-scale features more accurately. A hybrid approach combining the bubble model with the scalar transport is needed to capture the broad range of scales observed in cavitation. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27439 [...] [article] Prediction of small-scale cavitation in a high speed flow over an open cavity using large-eddy simulation [texte imprimé] / Ehsan Shams, Auteur ; Sourabh V. Apte, Auteur . - 2011 . - 14 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 11 (Novembre 2010) . - 14 p.
Mots-clés : scalars; pressure; flow (dynamics); vapors; eddies (fluid dynamics); cavitation; shear (mechanics); bubbles; cavities Index. décimale : 620.1 Essais des matériaux. Défauts des matériaux. Protection des matériaux Résumé : Large-eddy simulation of flow over an open cavity corresponding to the experimental setup of and (2008, “Cavitation Phenomena Occurring Due to Interaction of Shear Layer Vortices With the Trailing Corner of a Two-Dimensional Open Cavity,” Phys. Fluids, 20(4), p. 041702) is performed. The filtered, incompressible Navier–Stokes equations are solved using a co-located grid finite-volume solver with the dynamic Smagorinsky model for a subgrid-scale closure. The computational grid consists of around 7×106 grid points with 3×106 points clustered around the shear layer, and the boundary layer over the leading edge is resolved. The only input from the experimental data is the mean velocity profile at the inlet condition. The mean flow is superimposed with turbulent velocity fluctuations generated by solving a forced periodic duct flow at a freestream Reynolds number. The flow statistics, including mean and rms velocity fields and pressure coefficients, are compared with the experimental data to show reasonable agreement. The dynamic interactions between traveling vortices in the shear layer and the trailing edge affect the value and location of the pressure minima. Cavitation inception is investigated using two approaches: (i) a discrete bubble model wherein the bubble dynamics is computed by solving the Rayleigh–Plesset and the bubble motion equations using an adaptive time-stepping procedure and (ii) a scalar transport model for the liquid volume fraction with source and sink terms for phase change. Large-eddy simulation, together with the cavitation models, predicts that inception occurs near the trailing edge similar to that observed in the experiments. The bubble transport model captures the subgrid dynamics of the vapor better, whereas the scalar model captures the large-scale features more accurately. A hybrid approach combining the bubble model with the scalar transport is needed to capture the broad range of scales observed in cavitation. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27439 [...]