[article]
Titre : |
Non-Newtonian drops spreading on a flat surface |
Type de document : |
texte imprimé |
Auteurs : |
A. Dechelette, Auteur ; P. E. Sojka, Auteur ; C. R. Wassgren, Auteur |
Année de publication : |
2011 |
Article en page(s) : |
07 p. |
Note générale : |
fluids engineering |
Langues : |
Anglais (eng) |
Mots-clés : |
force surface tension flow (dynamics) viscosity Reynolds number drops water |
Résumé : |
The objective of this study is to develop a computational model that accurately describes the dynamic behavior of a non-Newtonian power-law film formed after a drop impinges on a flat surface. The non-Newtonian drop deposition and spreading process is described by a model based on one developed for Newtonian liquids. The effects of variations in non-Newtonian liquid rheological parameters, such as Ren (the non-Newtonian Reynolds number), n (the flow behavior index), and We (the Weber number), are studied in detail. Results show that a reduction in the viscous forces results in enhanced spreading of the film followed by a more rapid recession. An increase in surface tension results in reduced spreading of the film, followed by a more rapid recession. Model predictions of film diameter as a function of time were larger than corresponding experimental values obtained as part of this study. However, the discrepancy never exceeded 21%, demonstrating that the model accurately predicts the phenomena of interest. This comparison also shows that the results are in best agreement for large non-Newtonian Reynolds numbers and small non-Newtonian Ohnesorge numbers (We/Ren). |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27433 [...] |
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 10 (Octobre 2010) . - 07 p.
[article] Non-Newtonian drops spreading on a flat surface [texte imprimé] / A. Dechelette, Auteur ; P. E. Sojka, Auteur ; C. R. Wassgren, Auteur . - 2011 . - 07 p. fluids engineering Langues : Anglais ( eng) in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 10 (Octobre 2010) . - 07 p.
Mots-clés : |
force surface tension flow (dynamics) viscosity Reynolds number drops water |
Résumé : |
The objective of this study is to develop a computational model that accurately describes the dynamic behavior of a non-Newtonian power-law film formed after a drop impinges on a flat surface. The non-Newtonian drop deposition and spreading process is described by a model based on one developed for Newtonian liquids. The effects of variations in non-Newtonian liquid rheological parameters, such as Ren (the non-Newtonian Reynolds number), n (the flow behavior index), and We (the Weber number), are studied in detail. Results show that a reduction in the viscous forces results in enhanced spreading of the film followed by a more rapid recession. An increase in surface tension results in reduced spreading of the film, followed by a more rapid recession. Model predictions of film diameter as a function of time were larger than corresponding experimental values obtained as part of this study. However, the discrepancy never exceeded 21%, demonstrating that the model accurately predicts the phenomena of interest. This comparison also shows that the results are in best agreement for large non-Newtonian Reynolds numbers and small non-Newtonian Ohnesorge numbers (We/Ren). |
DEWEY : |
620.1 |
ISSN : |
0098-2202 |
En ligne : |
http://fluidsengineering.asmedigitalcollection.asme.org/Issue.aspx?issueID=27433 [...] |
|