Les Inscriptions à la Bibliothèque sont ouvertes en
ligne via le site: https://biblio.enp.edu.dz
Les Réinscriptions se font à :
• La Bibliothèque Annexe pour les étudiants en
2ème Année CPST
• La Bibliothèque Centrale pour les étudiants en Spécialités
A partir de cette page vous pouvez :
Retourner au premier écran avec les recherches... |
Détail de l'auteur
Auteur Laura A. Schaefer
Documents disponibles écrits par cet auteur
Affiner la rechercheDynamic modeling of hydrokinetic energy extraction / Veronica B. Miller in Transactions of the ASME . Journal of fluids engineering, Vol. 132 N° 9 (Septembre 2010)
[article]
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 9 (Septembre 2010) . - 07 p.
Titre : Dynamic modeling of hydrokinetic energy extraction Type de document : texte imprimé Auteurs : Veronica B. Miller, Auteur ; Laura A. Schaefer, Auteur Année de publication : 2011 Article en page(s) : 07 p. Note générale : fluids engineering Langues : Anglais (eng) Mots-clés : flow (dynamics); computational fluid dynamics; turbines; rivers; hydropower; dynamic modeling Résumé : The world is facing an imminent energy crisis. In order to sustain our energy supply, it is necessary to advance renewable technologies. Despite this urgency, however, it is paramount to consider the larger environmental effects associated with using renewable resources. Hydropower, in the past, has been seen as a viable resource to examine, given that its basics of mechanical to electrical energy conversion seem to have little effect on the environment. Discrete analysis of dams and in-stream diversion set-ups, although, has shown otherwise. Modifications to river flows and changes in temperature (from increased and decreased flows) cause adverse effects to fish and other marine life because of changes in their adaptive habitat. Recent research has focused on kinetic energy extraction in river flows, which may prove to be more sustainable, as this type of extraction does not involve a large reservoir or large flow modification. The field of hydrokinetic energy extraction is immature; little is known about the devices’ performance in the river environment and their risk of impingement, fouling, and suspension of sediments. The governing principles of hydrokinetic energy extraction are presented, along with a two-dimensional computational fluid dynamics (CFD) model of the system. Power extraction methods are compared and CFD model validation is presented. It is clear that more research is required in hydrokinetic energy extraction with an emphasis toward lower environmental and ecological impacts. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...] [article] Dynamic modeling of hydrokinetic energy extraction [texte imprimé] / Veronica B. Miller, Auteur ; Laura A. Schaefer, Auteur . - 2011 . - 07 p.
fluids engineering
Langues : Anglais (eng)
in Transactions of the ASME . Journal of fluids engineering > Vol. 132 N° 9 (Septembre 2010) . - 07 p.
Mots-clés : flow (dynamics); computational fluid dynamics; turbines; rivers; hydropower; dynamic modeling Résumé : The world is facing an imminent energy crisis. In order to sustain our energy supply, it is necessary to advance renewable technologies. Despite this urgency, however, it is paramount to consider the larger environmental effects associated with using renewable resources. Hydropower, in the past, has been seen as a viable resource to examine, given that its basics of mechanical to electrical energy conversion seem to have little effect on the environment. Discrete analysis of dams and in-stream diversion set-ups, although, has shown otherwise. Modifications to river flows and changes in temperature (from increased and decreased flows) cause adverse effects to fish and other marine life because of changes in their adaptive habitat. Recent research has focused on kinetic energy extraction in river flows, which may prove to be more sustainable, as this type of extraction does not involve a large reservoir or large flow modification. The field of hydrokinetic energy extraction is immature; little is known about the devices’ performance in the river environment and their risk of impingement, fouling, and suspension of sediments. The governing principles of hydrokinetic energy extraction are presented, along with a two-dimensional computational fluid dynamics (CFD) model of the system. Power extraction methods are compared and CFD model validation is presented. It is clear that more research is required in hydrokinetic energy extraction with an emphasis toward lower environmental and ecological impacts. DEWEY : 620.1 ISSN : 0098-2202 En ligne : http://fluidsengineering.asmedigitalcollection.asme.org/issue.aspx?journalid=122 [...]